7MPa Work clamping system

CTU CTT		
CLU CLT		
CNA CMC CMD		
CSU CST CSN CSY CSK		
CEK CEA CVH		
VCB VCP VHD VRG VEF WPB WPC		
HCD HCS HCT X63 WRA WRB	Refer to separate catalog for details.	

Expansion clamp

CGC	
CGT	
CGU	
CGE	
CGY	

1

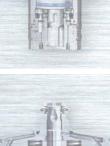
7MPa Sensing clamp

CTM		
CTN		
CLM		
CLN		唐0谭
CNB		
	Refer to separate catalog for details.	TO A LIG T

Pal system

CPC	
CPH	
CPY	
СРК	
WVP	
	Pofer to constate catalog for datails

Refer to separate catalog for details.


Refer to separate catalog for details.

air Work clamping system

CTX	
CTY	
CLX	
CLY	
CSS	
CSX	Refer to separate catalog for details.

35MPa Work clamping system

CTK CTW CTV CLW CLV CSW CSV WVP VCB VCP VHD VRG VEF WPC HCD HCS HCT X63

INDEX

Expansion clamp

7 MPa & air

Expansion clamp

0
Ē
a
0
- LO
Sic
B
ğ
Ш

	^{model} CGC Page →14	^{model} CGT Page →40	^{model} CGU Page →66
Expansion clamp			
Model	7MPa Double acting Standard model	7MPa Double acting Long neck model	7MPa Double acti Eccentric model
Specifications Clamping force & hydraulic pressure	Page →15	Page →41	Page →67
Structure Explanation of operation	Page →16	Page →42	Page →68
Features	Page →18	Page →44	Page →70
Air sensor valve function and structure	Page →20	Page →46	Page →72
Advantage of non-constant air blow model	Page →24	Page →48	Page →74
Dimensions Mounting details	Page →26	Page →50	Page →76
Gripper set Grip inner diameter & rod height	Page →34	Page →58	Page →82
System configuration example	Page →35	Page →59	Page →83
Hydraulic and pneumatic circuit diagram	Page →36	Page →60	Page →84
Operation cycle	Page →38	Page →63	Page →87
Caution in use	Page →39	Page →64	Page →88

Refer to **page** \rightarrow **6** for the details of the expansion clamps that are not described in the catalog.

4

Expansion clamp

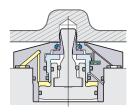
d
F
al
5
⊆
0
ISI.
L L
ŏ
ш

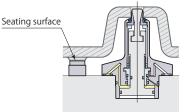
air Expansion clamp	model CGE Page →90	model CGY Page →114
Model	1MPa Double acting Standard model	1MPa Double acting Long neck model
Specifications Clamping force & air pressure	Page →91	Page →115
Structure Explanation of operation	Page →92	Page →116
Features	Page →94	Page →118
Air sensor valve function and structure	Page →96	Page →120
Advantage of non-constant air blow model	Page →100	Page →122
Dimensions Mounting details	Page →102	Page →124
Gripper set Grip inner diameter & rod height	Page →108	Page →132
System configuration example	Page →109	Page →133
Pneumatic circuit diagram	Page →110	Page →134
Operation cycle	Page →112	Page →137
Caution in use	Page →113	Page →138

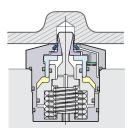
Refer to **page** \rightarrow **6** for the details of the expansion clamps that are not described in the catalog.

7MPa Double acting

7MPa Double acting



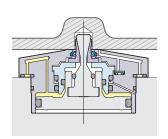

7MPa Single acting



Hydraulic : Clamp Spring : Unclamp

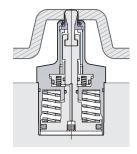
Low height model

Seating surface is set apart from clamp Seating-less model


Contact Pascal for more details.

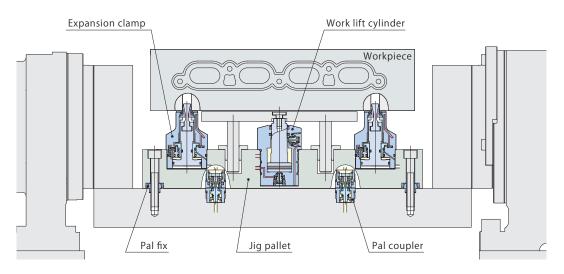
Expansion clamp

air Double acting



Low height model

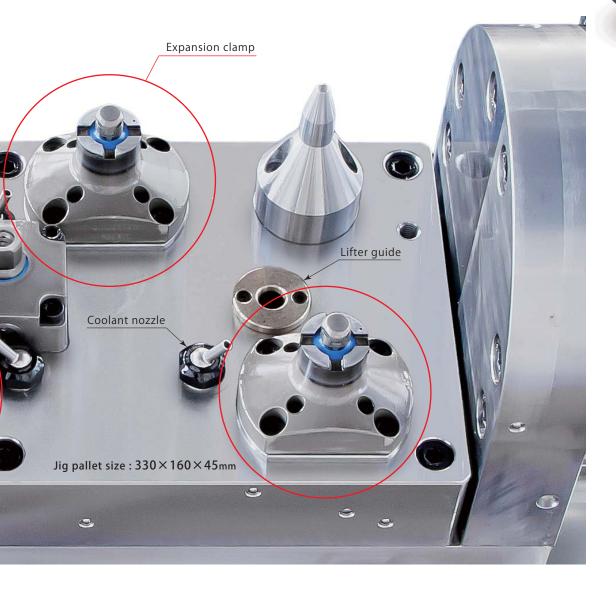
air Spring acting

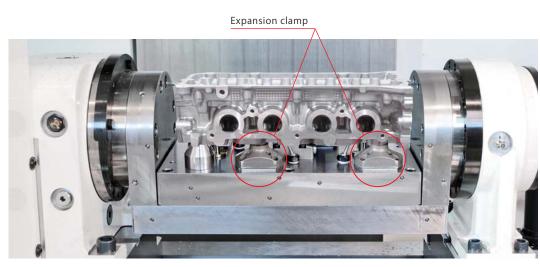

Spring : Clamp Air : Unclamp

Contact Pascal for more details.

Pascal compact jig system

Cylinder Block & Head, Transmission case Pascal expansion clamps are used in variety of

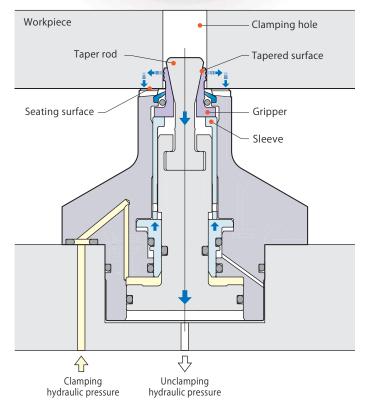


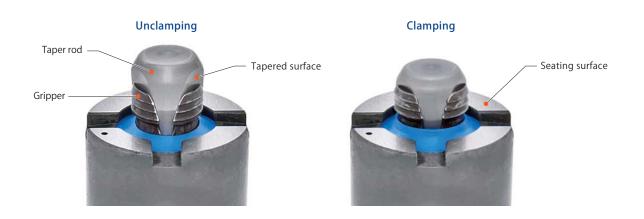


Expansion clamp

with the Expansion clamp

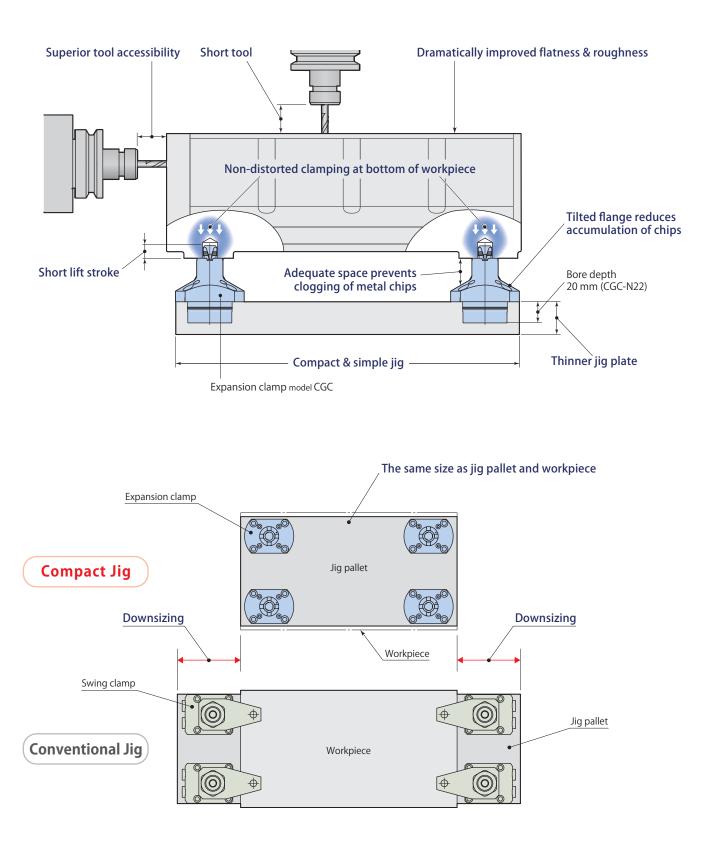
& housing, Valve body, knuckle, carrier, and ABS… automobile parts machining processes all over the world.


CG CG


Expansion clamp

Expansion clamp model CGC

The holding force of expansion clamp is transmitted to a gripper by the tapered surface. As the taper rod lowers, the gripper expands horizontally first along the tapered surface to grip the inner face of clamping hole then pulls a workpiece down to the seating surface.

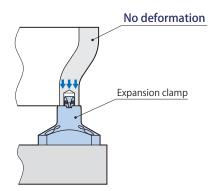


CG Expansion clamp

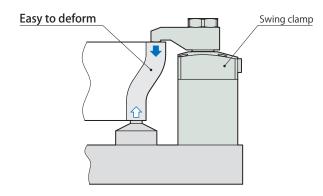
Compact jig system

The development of the expansion clamp has allowed compact and reliable jigs to be realized. The compact jig enables the size of machine and workpiece loading system to be minimized and compresses the machining line.

This can significantly help save on the investment for facilities.

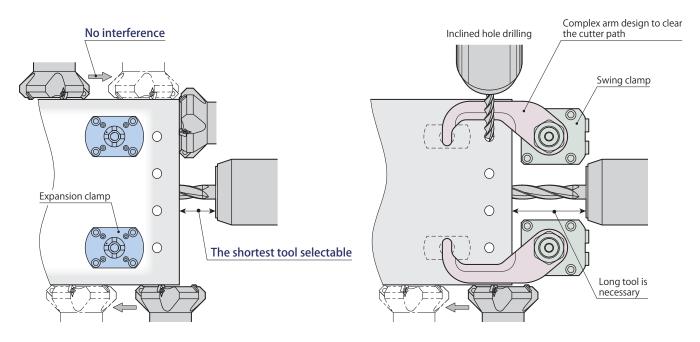

0 0

Features of expansion clamp


Non-distorted clamping at bottom of workpiece

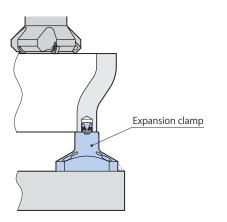
The expansion clamp grasps the bottom of the workpiece without any deformation and has a superior gripping force that allows improved machining accuracy and efficiency.

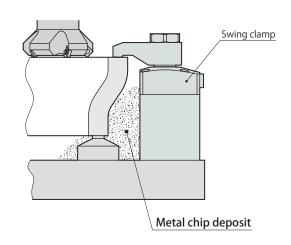
Clamping at the bottom of the workpiece by the expansion clamp



Clamping at the top surface of the workpiece by the conventional swing or link clamp

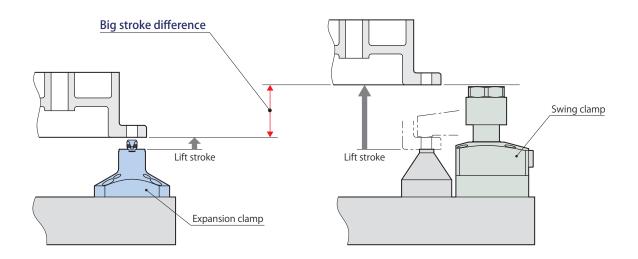
Superior tool accessibility


Any interferences between the tool and a clamp body or an arm are eliminated by using the expansion clamp, which enables machining from all directions and results in a highly efficient machining process.



Features of expansion clamp

Eliminate the troubles caused by metal chip

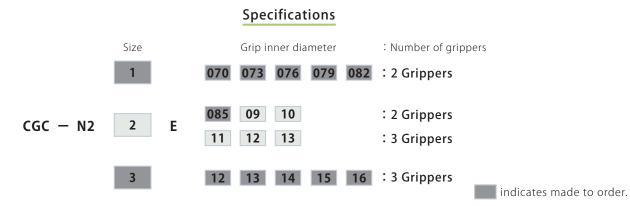

The expansion clamp can eliminate the troubles caused by metal chip deposits or debris contamination by clamping at the bottom of the workpiece.

High-speed workpiece transport

Low profile gripper design allows lift stroke of workpiece loading system to be shortened, thereby enabling high-speed transport and system operation.

□ U U

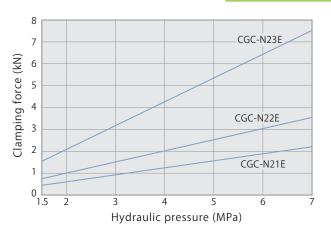
Expansion clamp


Double acting 7MPa

model CGC

Expansion clamp

Model		CGC-N21E*1						CGC-N22E						CGC-N23E					
Model	Grip inner diar	meter	070	073	076	079	082	085	09	10	11	12	13	12	13	14	15	16	
Number of			2 Grippers 3								3 Gri	3 Grippers							
Clamping fo	orce oressure 7MPa)	kN	1.92* ²		2	.24		3.04*2			3.54				7.50				
Radial expa (hydraulic p	nsion force pressure 7MPa)	kN	6.7* ²		7	.8		9.5* ²			11.1					23.4			
Taper rod st	troke	mm								4.	8								
Clamp strok	æ	mm								1.	2								
Cylinder	Clamp	cm³			1.7					2.	7					5.8			
capacity	Unclamp	cm³			2.3			3.5					7.2						
Allowable e	ccentricity*3	mm		±0.5															
Recomment	ded air blow	MPa		0.3															
Recomment	ded sensor air	MPa		0.2															
Mass		kg			0.38					0.	50			0.83					
Recommend torque of me	led tightening ounting screws*4	₄N∙m		3.5 7 12															
Workpiece r	material		Alum	Aluminum, steel and others (HRC30 or below) Cast iron also usable							e dep	endin	g on c	ondit	ions				
Allowable n grip inner d	iameter	mm	6.7	7.0	7.3	7.6	7.9	8.2	8.7	9.7	10.7	11.7	12.7	11.7	12.7	13.7	14.7	15.7	
Allowable n grip inner d	iameter	mm	7.4	7.7	8.0	8.3	8.6	9.2	9.7	10.7	11.7	12.7	13.7	12.7	13.7	14.7	15.7	16.7	
Grip inner d angle (Draft	liameter taperin : angle)	ng	3° or below																
Grip inner d								0.1	orbe	elow									


Pressure range:1.5–7 MPa (CGC-N21E070, CGC-N22E085:1.5–6 MPa)

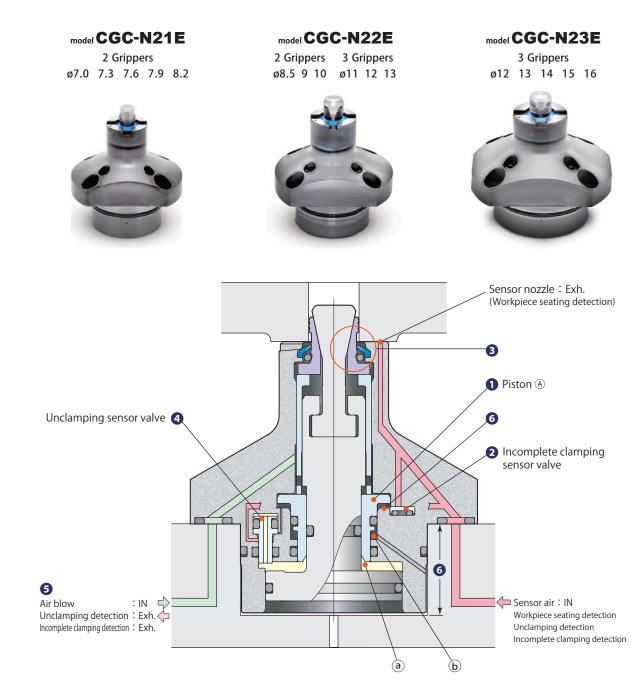
Operating temperature:0–70 °C
Fluid used:General mineral based hydraulic oil (ISO-VG32 equivalent)

Please inquire if above terms are not applied.

*1:CGC-N21E070, 073, 076, 079, 082 are not built-in unclamping sensor valve. *2:Capacity values for hydraulic pressure of 6 MPa are shown.

*3:By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function. *4:ISO R898 class 12.9

Clamping force & hydraulic pressure


Hydraulic pressure	MPa	1.5	2	3	4	5	6	7
CGC-N21E Clamping force F=0.320×P	kΝ	0.48	0.64	0.96	1.28	1.60	1.92	2.24
CGC-N22E Clamping force F=0.506×P	kΝ	0.76	1.01	1.52	2.02	2.53	3.04	3.54
CGC-N23E Clamping force F=1.072×P	kN	1.61	2.14	3.22	4.29	5.36	6.43	7.50

P:Hydraulic pressure (MPa)

 CGC-N21E070, CGC-N22E085 applicable hydraulic pressure should be 1.5 to 6 MPa. 2000

CGC-N2 E

Expansion clamp

1Gripper support mechanism (PAT.)

The gripping force can be maintained by the hydraulic power (Cylinder ⓐ) so that the gripper can firmly catch the workpiece without slipping. When unclamping, the hydraulic power (Cylinder ⓑ) support the gripper.

Incomplete clamping sensor valve (PAT.)

Incomplete clamping can be detected by an air sensor and the clamped condition can positively be confirmed. Refer to page →21.

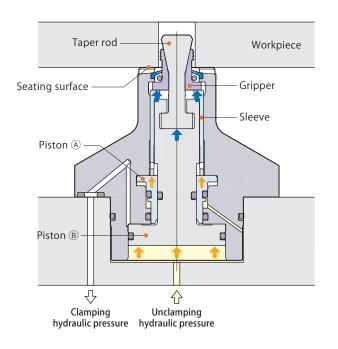
Ost effective scraping structure to prevent the clamp from metal chips (PAT.)

- No chips can intrude because the scraper fits around the gripper and the rod without space. Refer to pages →24, 25.
- Model CGC does not need air-blow during cutting process and it prevents work environment from air contamination by air-blow mist also lessens air consumption.
- The durability of scraper has been improved because it deforms radially and evenly along with the stroke of the gripper.

4 Unclamping sensor valve (JP PAT.)

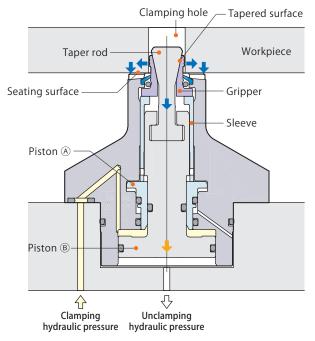
The valve enables positive unclamping detection by movement of piston when model CGC is in unclamping action. Refer to page →22.

SUsing one circuit for air blow and sensor exhaust (JP PAT.)

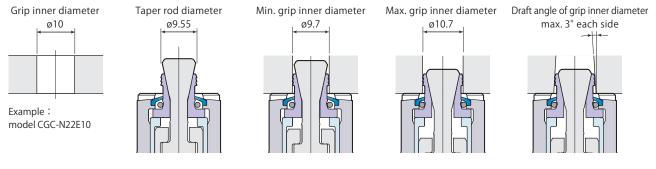

Sharing exhaust circuit of the unclamping sensor valve and the incomplete clamping sensor valve with an air blow circuit allows to reduce the number of the circuits and thereby enables the circuit design to be easy.

6 Stroke end detection by a piston **A** (JP PAT.)

- The gripper does not impair the scraper because it expands horizontally first then strokes down for clamping.
- No tolerance is required on depth of the bore when machining it because the piston ends its stroke by an internal part, not at the bottom of the bore.

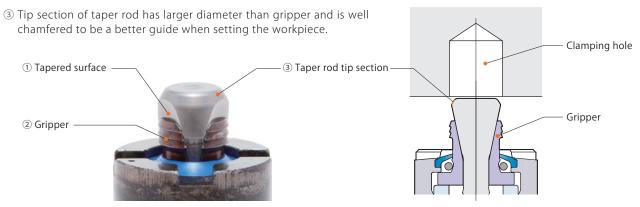

Workpiece setting

- ① Taper rod and gripper are raised by pistons (A), (B) and sleeve. The gripper is drawn inward within the taper rod diameter.
- ② Set the workpiece onto the seating surface.


Workpiece holding

- ① Piston [®] and taper rod lower with piston [®] being held at upper stroke end position by clamping hydraulic pressure.
- ② The gripper expands horizontally along the tapered surface to grip inner face of clamping hole holding its position at upper stroke end by piston (A) and sleeve.
- ③ The gripper securely grips the inner face of clamping hole and pulls the workpiece down firmly onto the seating surface.

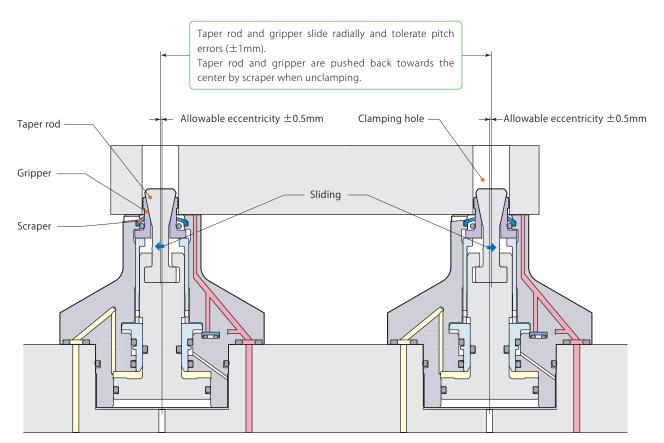
Large gripper expansion stroke


The gripper expands horizontally 1.0mm(*), which enables the accommodation of dimensional variations in diecast bore diameters and ensures workpiece is held securely.

*:0.7mm stroke for CGC-N21E070, 073, 076, 079, 082

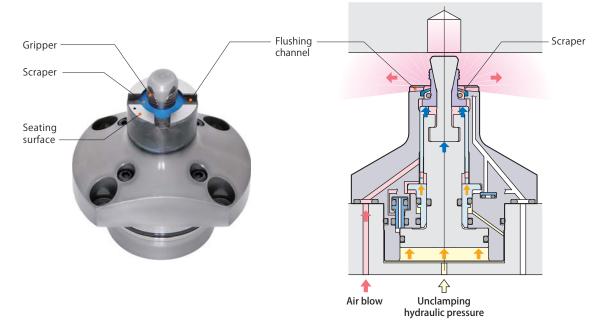
Taper rod and gripper with superior durability

- ① The holding force of expansion clamp is transmitted from tapered surface to gripper, making it possible for the gripper to hold onto inner face of clamping hole and hold the workpiece on the seating surface for secure workpiece clamping.
- O Special steel with superior abrasion resistance is used for gripper to improve durability.

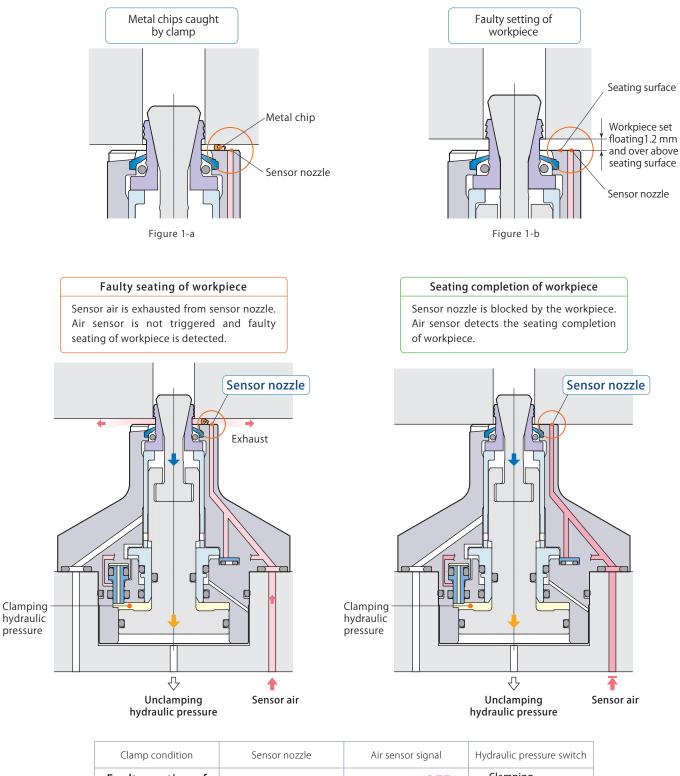


Seating surface can be reground (Max.0.1 mm)

① When seating surface is damaged, the flange section can be dismounted and reground.


Clamping hole pitch errors can be tolerated

By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function.

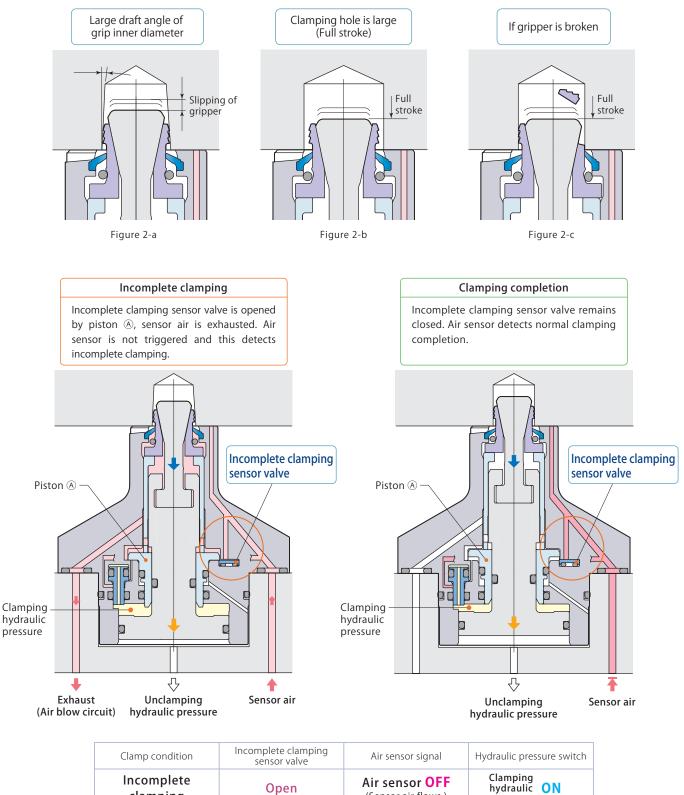

Incorporating strong air blowing circuit

Air blow from a gap between the gripper and scraper clears off metal chips and coolant that stay on the seating surface. Flushing channel is also provided on the seating surface to remove the metal chips and coolants smoothly during workpiece setting.

Sensor nozzle detects faulty seating of workpiece

If clamping operation is made when metal chips are under the workpiece (Figure 1-a), or when the workpiece is set 1.2mm and over above the seating surface due to its distortion, the workpiece cannot sit fully on the surface and air is exhausted from the sensor nozzle. Incomplete workpiece seating is detected.

Faulty seating of workpiece	Open	Air sensor OFF (Sensor air flows.)	Clamping hydraulic ON pressure


Expansion clamp

Incomplete clamping sensor valve detects incomplete clamping

PAT. JP4297511 US8246029 EP2253419

When gripper fails to grip properly due to large draft angle of grip inner diameter (Figure 2-a), incomplete clamping sensor valve is opened. Sensor air is exhausted and this detects incomplete clamping.

When clamping hole exceeds tolerance value (Figure 2-b), or when gripper is broken (Figure 2-c), incomplete clamping is detected as well.

(Sensor air flows.)

Open

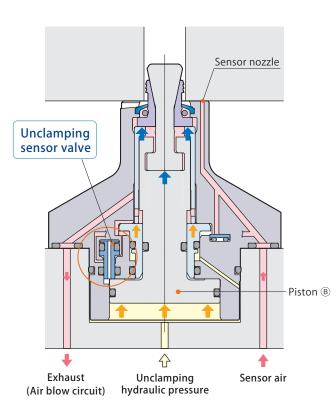
clamping

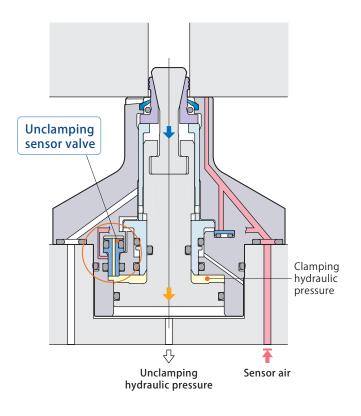
ON

pressure

Unclamping sensor valve detects unclamping operation is complete

Unclamping sensor valve enables sensor to detect unclamping completion. The valve opens to exhaust sensor air even when the workpiece blocks the sensor nozzle.

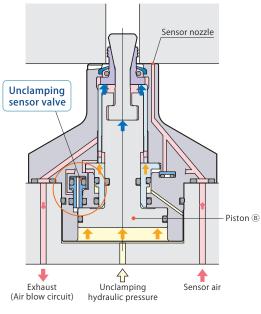

Unclamping sensor valve will not equipped with the following models. CGC-N21E070 / 073 / 076 / 079 / 082

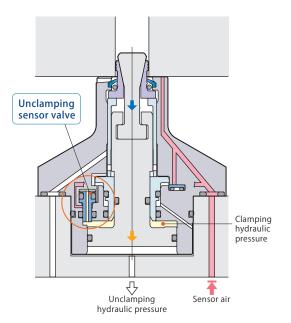

Unclamping completion

Unclamping sensor valve is opened by piston (B) and sensor air is exhausted. Air sensor is not triggered and this detects unclamping completion.

Clamping completion

Unclamping sensor valve is closed by clamping hydraulic pressure. Air sensor detects normal clamping completion.

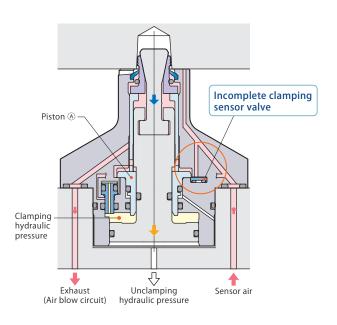




Clamp condition	Unclamping sensor valve	Air sensor signal	Hydraulic pressure switch
Unclamping completion	Open	Air sensor OFF (Sensor air flows.)	Unclamping hydraulic ON pressure
Clamping completion	Close	Air sensor ON (Sensor air does not flow.)	Clamping hydraulic ON pressure

Unclamping completion



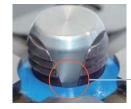


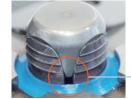
Clamp condition	Sensor nozzle	Incomplete clamping sensor valve	Unclamping sensor valve	Air sensor signal	Hydraulic pressure switch
Unclamping completion	Close	Close	Open	Air sensor OFF (Sensor air flows.)	Unclamping hydraulic ON pressure
Clamping completion	Close	Close	Close	Air sensor ON (Sensor air does not flow.)	Clamping hydraulic ON pressure

Faulty seating of workpiece

Incomplete clamping

Clamp condition	Sensor nozzle	Incomplete clamping sensor valve	Unclamping sensor valve	Air sensor signal	Hydraulic pressure switch
Faulty seating of workpiece	Open	Close	Close	Air sensor OFF (Sensor air flows.)	Clamping hydraulic ON pressure
Incomplete clamping	Close	Open	Close	Air sensor OFF (Sensor air flows.)	Clamping hydraulic ON pressure


Non-constant air blow model considerably reduces air consumption


PAT. JP5674191 US8800982 EP2543468

The newly developed non-constant air blow model has no open space between a scraper, a gripper and a rod thereby no air blow during machining is required to prevent chips intrusion.

The air blow model (See picture on the right), which requires constant air blow during machining, used to consume constantly 50 L/ min (0.3MPa) of air for 12mm of grip inner diameter, however, the new model requires air blow only when the clamp is in clamp and unclamp action, and when workpiece replacement.

This enables significant reduction of air consumption, which helps promote energy conservation.

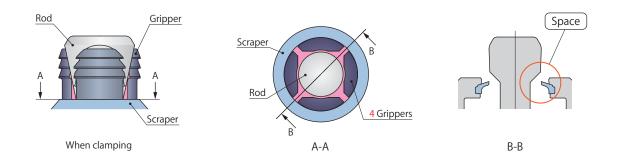
2 Grippers, 3 Grippers Non-constant air blow model

Open space where metal chips can intrude is removed during clamping.

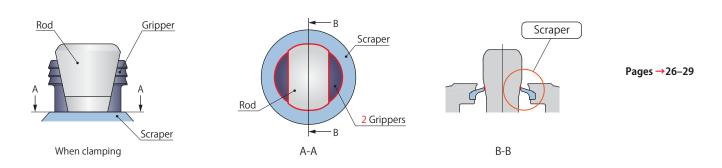
4 Grippers (Old model) Air blow model

Open space where metal chips can intrude is created during clamping.

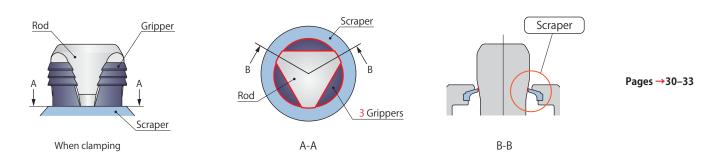
Non-constant air blow model


Number of grippers	Grip inner diameter	Clamping force	Model
	ø 7.0	1.92 kN (Hydraulic pressure 6MPa)	
Cripport	ø7.3 7.6 7.9 8.2	2.24 kN (Hydraulic pressure 7MPa)	CGC-N21E Grip inner diameter
2 Grippers	ø 8.5	3.04 kN (Hydraulic pressure 6MPa)	CGC-N22E Grip inner diameter
	ø9 10	3.54 kN (Hydraulic pressure 7MPa)	

Number of grippers	Grip inner diameter	Clamping force	Model
2 Crippor	ø11 12 13	3.54 kN (Hydraulic pressure 7MPa)	CGC-N22E Grip inner diameter
3 Grippers	ø12 13 14 15 16	7.50 kN (Hydraulic pressure 7MPa)	CGC-N23E Grip inner diameter


ø12, ø13 has been available in two different models of the clamping force.

Space where metal chips can intrude is created (Old model)



Because of space between scraper, gripper and the rod, air blow must always be performed to prevent intrusion of chips.

Secure chip protection

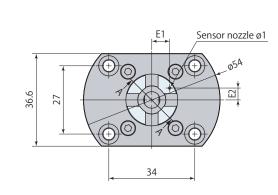
Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

16

 40 ± 0.005

5

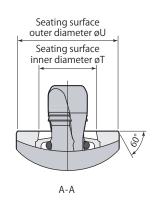

48

19.5

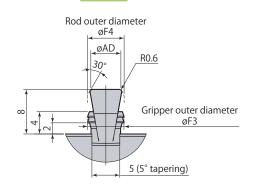
67.5

Dimensions

ØS -0.1


Clamp removal thread

4-M5×0.8 thread through


5

4-ø4.5

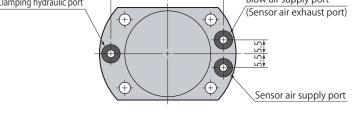
4-ø8

*Details

Grip inner diameter usage requirements

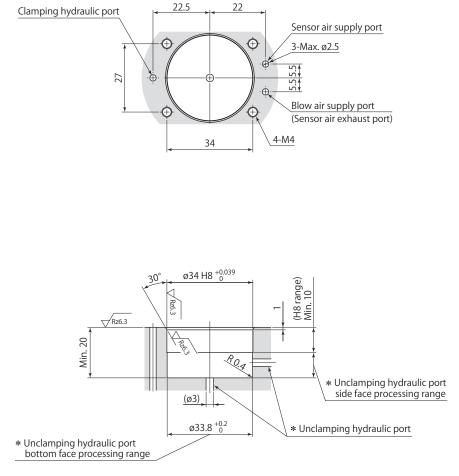
4

Min.


Through hole

					mm		
Model	CGC-N21E						
model	070	073	076	079	082		
E1	7.1	7.1	7.3	7.5	7.6		
E2	4.7	4.7	4.7	4.7	4.7		
øF3	6.5	6.8	7.1	7.4	7.7		
øF4	6.55	6.85	7.15	7.45	7.75		
øS	20.5	20.6	20.9	21.2	21.5		
øT	10.6	10.9	11.2	11.5	11.8		
øU	20	20.1	20.4	20.7	21		
øAD	5.4	5.7	6	6.3	6.6		
	-070 072						

	Model	070	073	076	079	(
	E1	7.1	7.1	7.3	7.5	
	E2	4.7	4.7	4.7	4.7	
	øF3	6.5	6.8	7.1	7.4	
	øF4	6.55	6.85	7.15	7.45	
90).	øS	20.5	20.6	20.9	21.2	2
	øT	10.6	10.9	11.2	11.5	1
	øU	20	20.1	20.4	20.7	2
	øAD	5.4	5.7	6	6.3	


O-ring AS568-025 ø33.5 3-O-ring P4 $ø34 \, f7 \, {}^{-0.025}_{-0.050}$ 22.5 22 Blow air supply port Clamping hydraulic port \oplus \oplus

- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs9
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

CGC-N21E070, 073, 076, 079, 082 are made to order.

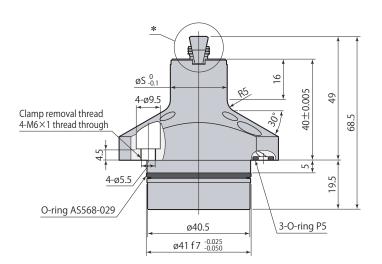
Mounting details

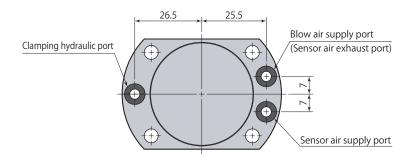
Rz: ISO4287(1997)

*: Unclamping hydraulic port must be made on either side or bottom face.

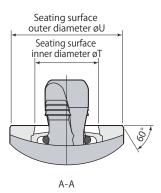
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

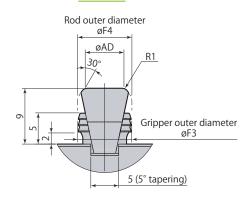
The 30° taper machining must be provided to avoid the damage of the O-ring.


Double


acting

Dimensions

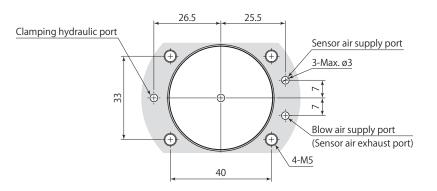

50

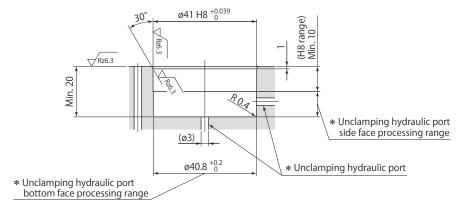


- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

*Details

Grip inner diameter usage requirements


Blind hole

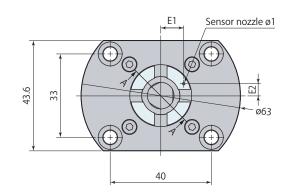

Through hole

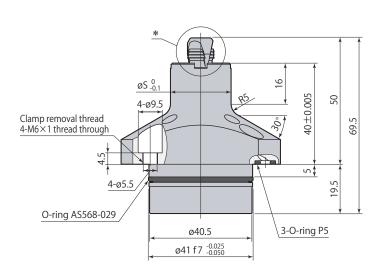
			mm		
Model	CGC-N22E				
Model	085	09	10		
E1	8.3	8.3	8.9		
E2	4.6	4.6	4.6		
øF3	8	8.5	9.5		
øF4	8.05	8.55	9.55		
øS	22.5	22.5	23.5		
øT	12.1	12.6	13.6		
øU	22	22	23		
øAD	6.3	6.8	7.8		

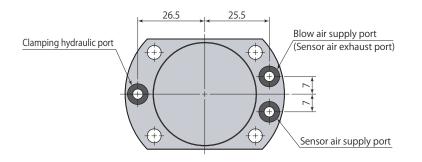
CGC-N22E085 is made to order.

Mounting details

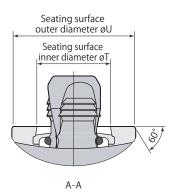
Rz: ISO4287(1997)

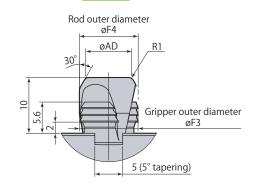

*: Unclamping hydraulic port must be made on either side or bottom face.


Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

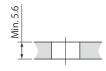

The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions


590

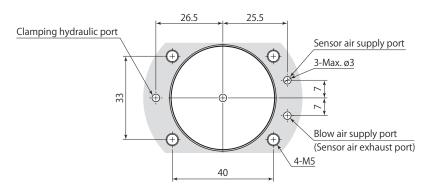


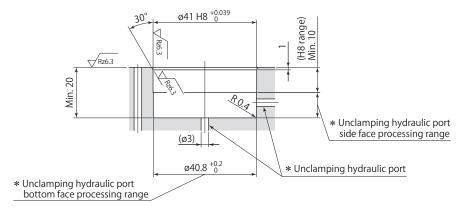
- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.



*Details

Grip inner diameter usage requirements



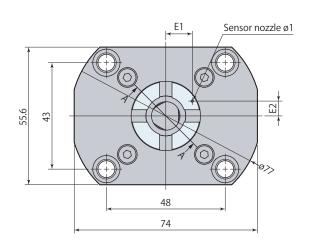

Through hole

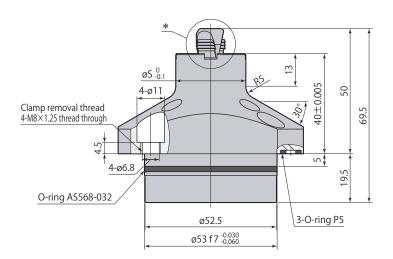
Blind hole

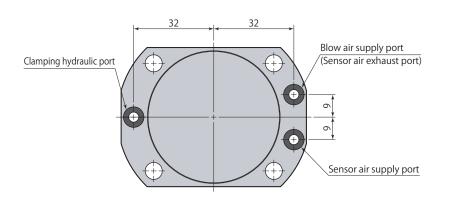
			mm			
Model	CGC-N22E					
Model	11	12	13			
E1	9.4	9.9	10.4			
E2	4.7	4.8	4.9			
øF3	10.5	11.5	12.5			
øF4	10.55	11.55	12.55			
øS	24.5	25.5	26.5			
øT	14.6	15.6	16.6			
øU	24	25	26			
øAD	8.2	9.2	10.2			

Mounting details

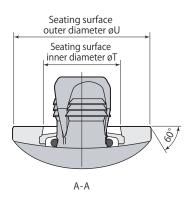
Rz: ISO4287(1997)

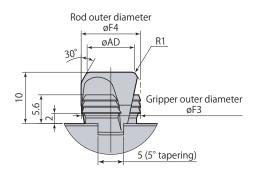

*: Unclamping hydraulic port must be made on either side or bottom face.

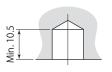

Apply an appropriate amount of grease to the chamfer and the bore when mounting. Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

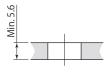

• The 30° taper machining must be provided to avoid the damage of the O-ring.

CGC


Dimensions

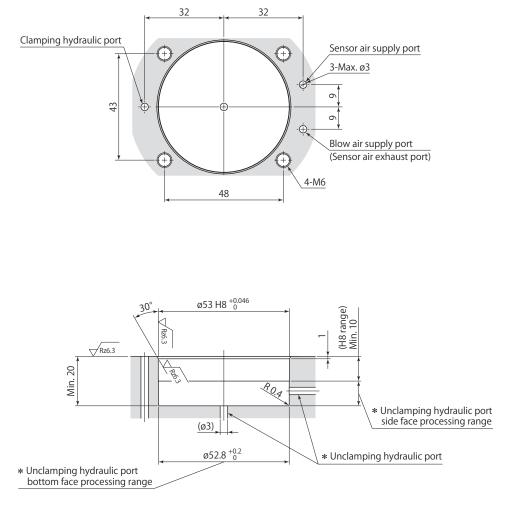



- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.



*Details

Grip inner diameter usage requirements


Through hole

Blind hole

mn

Model	CGC-N23E					
Model	12	13	14	15	16	
E1	10.7	10.7	10.7	11	11.5	
E2	6	6	6	6	6.1	
øF3	11.5	12.5	13.5	14.5	15.5	
øF4	11.55	12.55	13.55	14.55	15.55	
øS	28	28	28	28.5	29.5	
øT	15.6	16.6	17.6	18.6	19.6	
øU	27.5	27.5	27.5	28	29	
øAD	9.2	10.2	11.2	12.2	13.2	

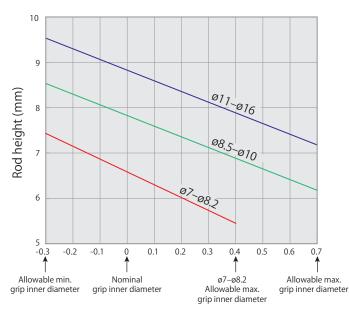
CGC-N23E12, 13, 14, 15, 16 are made to order.

Rz: ISO4287(1997)

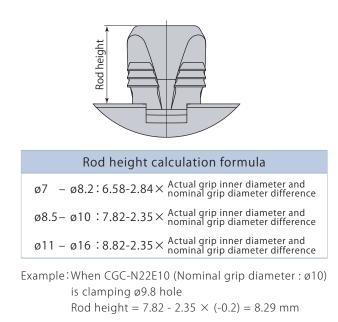
*: Unclamping hydraulic port must be made on either side or bottom face.

Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

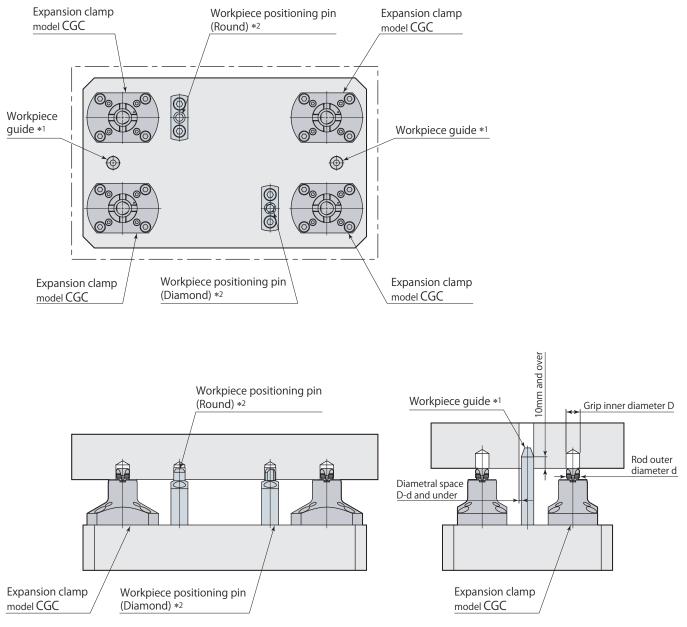
• The 30° taper machining must be provided to avoid the damage of the O-ring.


Double

acting


Number of grippers	Gripper set model	Clamp model	Set description	
	CGC-N21EJ070	CGC-N21E070		
	CGC-N21EJ073	CGC-N21E073		
	CGC-N21EJ076	CGC-N21E076		
2 Crippore	CGC-N21EJ079	CGC-N21E079	$\frac{\text{Scraper} \times 1}{\sqrt{(\text{Refer to table left)}}}$	
2 Grippers	CGC-N21EJ082	CGC-N21E082		
	CGC-N22EJ085	CGC-N22E085	0-ring × 1	
	CGC-N22EJ09	CGC-N22E09		
	CGC-N22EJ10	CGC-N22E10		
	CGC-N22EJ11	CGC-N22E11		
	CGC-N22EJ12	CGC-N22E12		
	CGC-N22EJ13	CGC-N22E13		
2 Crippore	CGC-N23EJ12	CGC-N23E12	It is recommended that grippers, scraper and	
3 Grippers	CGC-N23EJ13	CGC-N23E13	O-ring be replaced after about 200,000 oper-	
	CGC-N23EJ14	CGC-N23E14	ations. Replace grippers in sets and not just an	
	CGC-N23EJ15	CGC-N23E15	individual gripper. (Refer to the table on the left for the gripper set model.)	
	CGC-N23EJ16	CGC-N23E16	······································	

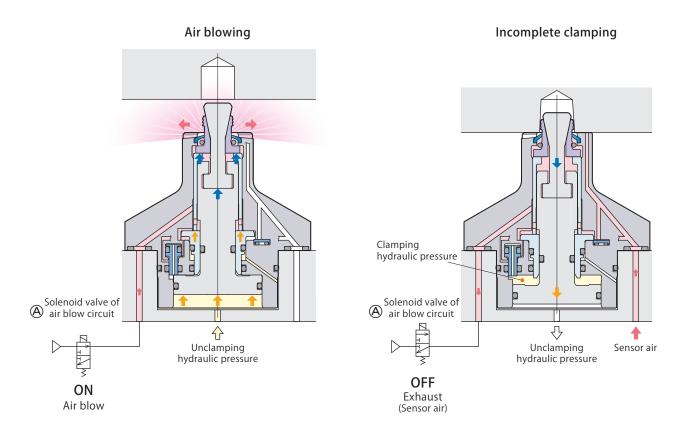
Gripper set replacement


Grip inner diameter & rod height when clamping

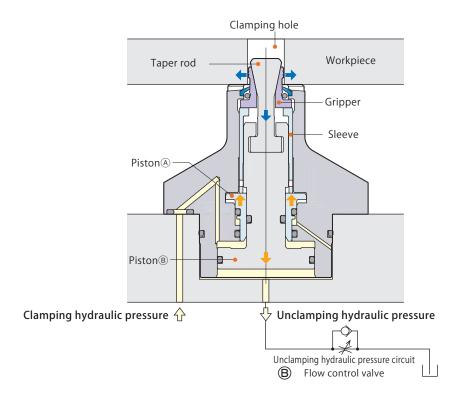
Difference between actual grip inner diameter and nominal grip diameter (mm)

System configuration example

- *1: When using automatic or robotic conveyers, prevent damage to clamp caused from impact by setting workpiece guides. Using the above guide as reference, accurately position the holes when using workpiece guides.
- *2: The expansion clamp does not have a workpiece positioning function. Install workpiece positioning pins (or similar).


Expansion clamp

000


Hydraulic and pneumatic circuit diagram

- Air blow will not be necessary during cutting process. Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping to remove metal chips and debris.
- The solenoid valve (a) must be closed when checking the operation of the clamp with the air sensor. Also 3 port type of solenoid valve must be used in the circuit. If 2 port type of the valve is used, sensing air cannot be exhausted and misclamp detection function is disabled.

- Operation speed must be adjusted by a meter-out type flow control valve (B) being provided in the unclamping circuit. By the adjustment, oil flow in unclamping circuit is squeezed and back pressure is generated. The back pressure acts on the piston (A) of the clamp and makes the gripper expand first then the taper rod strokes down to clamp. If meter-in type flow control valve is installed in the circuit, it dumps the oil rapidly and makes the gripper move very quick which causes incomplete clamping.
- Adjust oil flow when clamping to have the taper rod full stroke in 0.3 sec or over.
 Excessive oil flow to the clamp gives impact load and may cause breakage of the parts.
- Provide additional flow control valve (1) to the place of either (1) or (2) in the circuit diagram to adjust oil flow when a large discharge volume pump is used for the hydraulic circuit. The flow control valve (8) alone may not be good enough to adjust the speed of clamp operation.

Air sensor unit © recommended condition of use

Supplier and	ISA3-F/G series manufactured by SMC
model	GPS2-05, GPS3-E series manufactured by CKD
Air supply pressure	0.2 MPa
Inner diameter of piping	ø4 mm (ISA3-F:ø2.5 mm)
Overall piping length	5 m or less

- Use a solenoid valve with needle for air sensor unit © and control it supplying air all the time in order to eliminate intrusion of chips or coolant.
- There is a case that air sensing cannot be made successfully as designed when it is used out of the usage shown on the left. Contact Technical service center for more details.

Operation cycle

The clamp should be controlled with the cycle in the diagram shown below to detect the operation status exactly.

Case of model CGC-N21E

	State		Workpiece loading	Clamping	Air blow OFF	Clamping completion*1	(Machining)	Air blow ON	Unclamping	Unclamping completion* ²	Workpiece unloading
	Workpiece	Clamp									
	clamp	Unclamp									
*4	Air blow	ON			_						
*4	AII DIOW	OFF									
	Concoroir	ON									
	Sensor air	OFF	-								
	Clamping h pressure P.	-	OFF			0	N			OFF	
*5	Unclamping hydraulic pressure P.S. 2 ON OFF				FF			ON			
	Air sensor					ON or	OFF*3				

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=ON

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON

*3 : ON : Complete clamping OFF : Incomplete clamping

*4 : Solenoid valve control *5 : Hydraulic pressure switch, Air sensor signal

Case of model CGC-N22E \Box , CGC-N23E \Box

State Workpiece loading				Clamping	Air blow OFF	Clamping completion*1	(Machining)	Air blow ON	Unclamping	Air blow OFF	Unclamping completion* ²	Air blow ON	Workpiece unloading
	Workpiece	Clamp							$\overline{}$			·	
	clamp	Unclamp											
*4	Air blow	ON								\neg			
*4	AILDIOM	OFF											
	Concercir												
	Sensor air	OFF											
	Clamping h pressure P.		OFF			0	N				OFF		
*5	*5 Unclamping hydraulic pressure P.S. 2		ON			0	FF				ON		
	Air sensor					ON or	OFF* ³				OFF		

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=ON

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON Air sensor=OFF

*****3 : ON : Complete clamping OFF : Incomplete clamping

*4 : Solenoid valve control *5 : Hydraulic pressure switch, Air sensor signal

Caution in use

- Be sure to make inner diameter of air blow circuit 4 mm and over except for clamp mounting surface.
- Set the workpiece in such a way that the clamping hole of workpiece is perpendicular to seating surface. Clamping in tilted condition results in uneven contact of gripper with hole, which leads to concentration of load that may cause damage.
- Verify that there are no metal chips or debris on seating surface of clamping hole and clamp body before setting workpiece. Allowing intrusion of metal chips results in insecure clamping, which can lead to low grade of machining accuracy.
- Flaring (Biting) of gripper into workpiece varies depending on workpiece material or thermal processing conditions. With regards to conditions of workpiece and clamping hole, refer to **page** \rightarrow **15**. Secure clamping is not possible when workpiece or clamping hole that does not satisfy these conditions is used.
- If clamping hole serves as taper hole (cast draft hole with gradient), then perform test clamping using applicable workpiece beforehand to verify that there are no problems with operations.
- Deformation may occur if the thickness of clamping hole section of workpiece is extremely thin. Use applicable workpiece to perform test clamping beforehand to verify that there are no deformations in thin portion.
- Supply the dry and filtered air. Particulate size 5μ m or less is recommended.
- Measure seating surface flatness with hydraulic pressure applied on clamping side, or by applying hydraulic pressure on neither clamping nor unclamping side.
- Set detection range of air sensor to 0.05 mm and under from seating surface. Insert a feeler gauge between workpiece and seating surface to create detection distance in order to perform setting accurately. Refer to instruction manual of air sensor for details on setting methods.

Perform unclamping completion detection, clamping completion detection and incomplete clamping detection with combination actions of pressure switch and sensor shown in table below. (Refer to hydraulic and pneumatic circuit diagram on **page** \rightarrow **36** for details.)

Case of model CGC-N21E

Applications	Pressure switch 1 (P.S. 1)	Pressure switch 2 (P.S. 2)	Air sensor
Unclamping completion detection	OFF	ON	_
Clamping completion detection	ON	OFF	ON
Incomplete clamping detection	ON	OFF	OFF

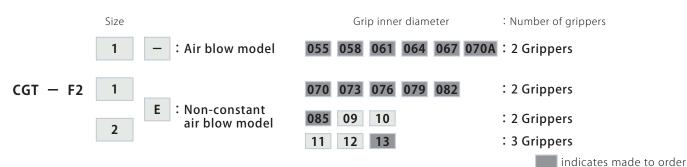
Case of model CGC-N22E□, CGC-N23E□

Pressure switch 1 (P.S. 1)	Pressure switch 2 (P.S. 2)	Air sensor
OFF	ON	OFF
ON	OFF	ON
ON	OFF	OFF
	switch 1 (P.S. 1) OFF ON	switch 1 (P.S. 1)switch 2 (P.S. 2)OFFONONOFF

8

Expansion clamp

Double acting 7MPa



model CGT

Expansion clamp Long neck

Specifications

															Ind	icates	mau	e to c	oraer.
	Size				CGT	F21-				C	iT-F2	1E				CGT-	F22E		
Model Grip inner diar		ameter	055	058	061	064	067	070A	070	073	076	079	082	085	09	10	11	12	13
Number of grip	Number of grippers			,					2 Grip	opers							3 (Gripp	ers
Clamping force (hydraulic pres	sure 7MPa)	kN			1.	35* ¹					1.89			3.04*2			3.54	ŀ	
Radial expansio (hydraulic pres	on force	kN			4.	21* ¹					6.58			9.5* ²			11.1		
Taper rod strok		mm			4.	0								4.8					
Clamp stroke		mm									1.2								
Cylinder	Clamp	cm ³			1.	2			1.5			2.7							
capacity	Unclamp	cm ³	1.6					2.0					3.5						
Allowable ecce	ntricity*3	mm			±0.	3							±	0.4					
Recommended air blow pressu		MPa							1		0.3								
Recommended sensor air press		MPa									0.2								
Mass		kg	0.27				0.29						0	.43					
Recommended torque of mour	l tightening nting screws*4	N·m						3.5								7			
Workpiece mat	erial		Alum	inum,	, steel	and o	others	(HRC	30 or	below	ı) Cas	t iron	also u	usable	depe	endin	g on (condi	tions
Allowable min. grip inner diam	neter	mm	5.2	5.5	5.8	6.1	6.4	6.7	6.7	7.0	7.3	7.6	7.9	8.2	8.7	9.7	10.7	11.7	12.7
Allowable max. grip inner diameter mm			5.8	6.1	6.4	6.7	7.0	7.3	7.4	7.7	8.0	8.3	8.6	9.2	9.7	10.7	11.7	12.7	13.7
Grip inner diameter tapering angle (Draft angle)			3° or below																
Grip inner diam	neter circularity	/		0.1 or below															

Pressure range: 1.5–7 MPa (CGT-F21-055, 058, 061, 064, 067, 070A: 1.5–5 MPa, CGT-F22E085: 1.5–6 MPa)

● Proof pressure:10.5 MPa (CGT-F21-055, 058, 061, 064, 067, 070A:7.5 MPa, CGT-F22E085:9 MPa) ● Operating temperature:0–70 ℃

Fluid used:General mineral based hydraulic oil (ISO-VG32 equivalent)

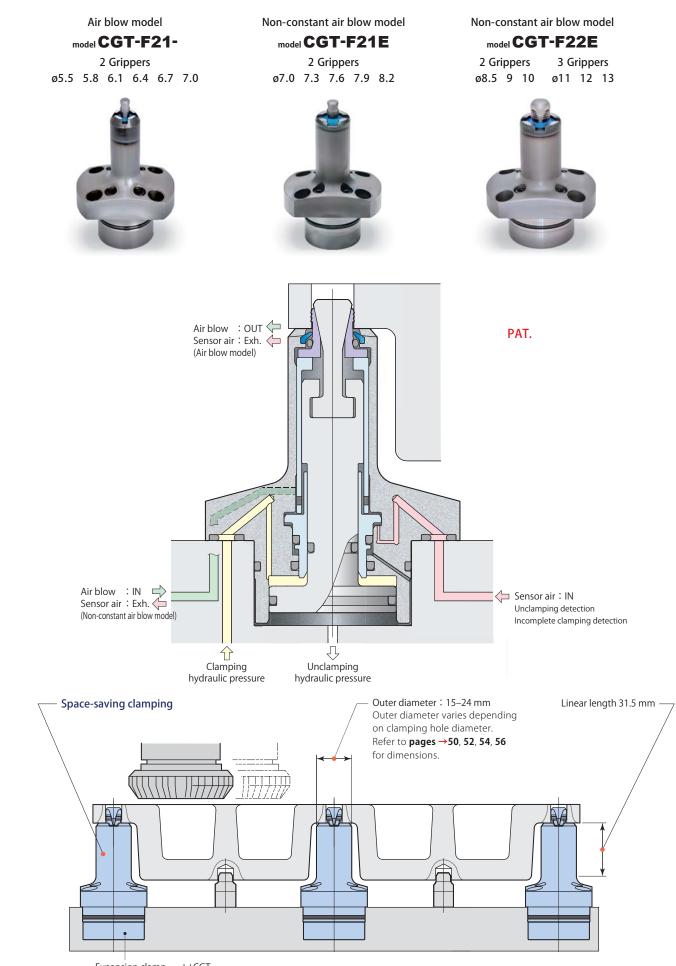
Please inquire if above terms are not applied.

*1: Capacity values for hydraulic pressure of 5 MPa are shown. *2: Capacity values for hydraulic pressure of 6 MPa are shown.

*3:By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function. *4:ISO R898 class 12.9

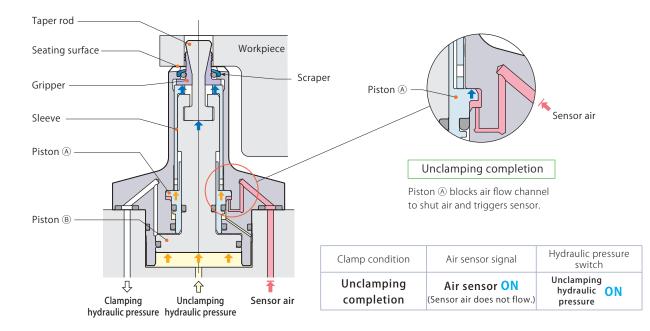
Clamping force & hydraulic pressure

Hydraulic pressure	MPa	1.5	2	3	4	5	б	7
CGT-F21 Clamping force $F=0.270 \times P$	kN	0.41	0.54	0.81	1.08	1.35	1.62	1.89
CGT-F22E Clamping force F=0.506×P	kN	0.76	1.01	1.52	2.02	2.53	3.04	3.54

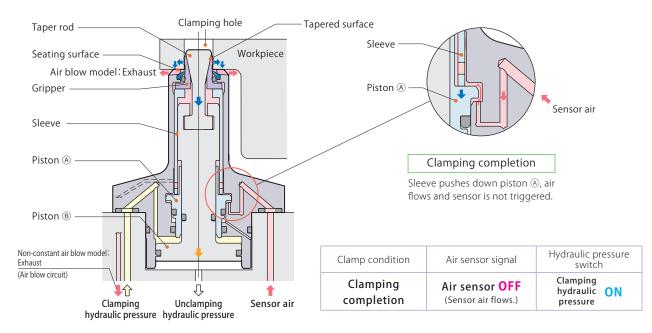

P:Hydraulic pressure (MPa)

 CGT-F21-055, 058, 061, 064, 067, 070A applicable hydraulic pressure should be 1.5 to 5 MPa.

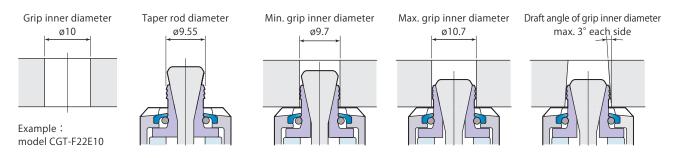
CGT-F22E085 applicable hydraulic pressure should be 1.5 to 6 MPa.



Expansion clamp Long neck

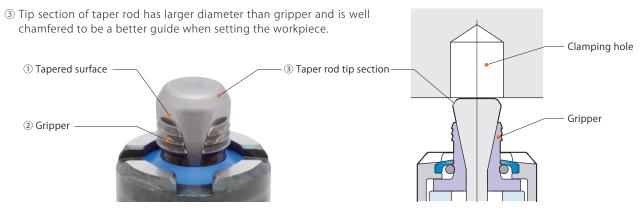

Workpiece setting (Unclamping completion)

- ① Pistons (A) & (B), as well as taper rod and gripper are raised by unclamping hydraulic pressure.
- ② Workpiece unclamping is completed by the sensor air, clamping and unclamping hydraulic pressure.
- ③ Set the workpiece onto the seating surface.


Workpiece holding (Clamping completion)

- ① Piston [®] and taper rod are lowered by clamping hydraulic pressure after releasing unclamping hydraulic pressure.
- ② The gripper expands horizontally along the tapered surface to grip inner face of clamping hole.
- ③ The gripper securely grips the inner face of clamping hole and pulls the workpiece down firmly onto the seating surface.
- ④ Workpiece holding is completed by the sensor air, clamping and unclamping hydraulic pressure.

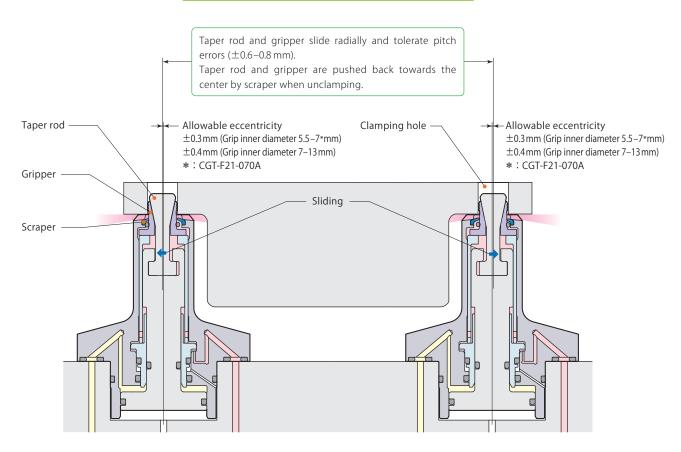
Large gripper expansion stroke


The gripper expands horizontally 1.0mm(*), which enables the accommodation of dimensional variations in diecast bore diameters and ensures workpiece is held securely.

*: 0.6mm stroke for CGT-F21-055, 058, 061, 064, 067, 070A. 0.7mm stroke for CGT-F21E070, 073, 076, 079, 082.

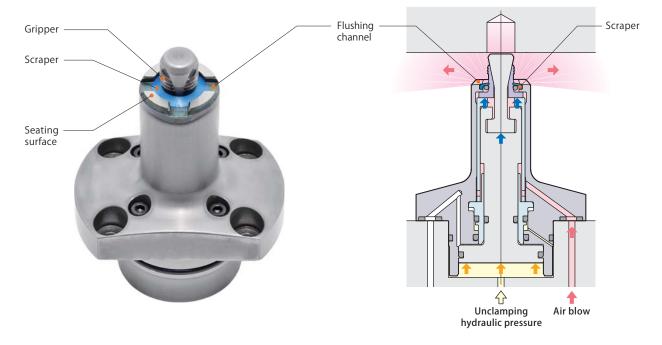
Taper rod and gripper with superior durability

- ① The holding force of expansion clamp is transmitted from tapered surface to gripper, making it possible for the gripper to hold onto inner face of clamping hole and hold the workpiece on the seating surface for secure workpiece clamping.
- ② Special steel with superior abrasion resistance is used for gripper to improve durability.

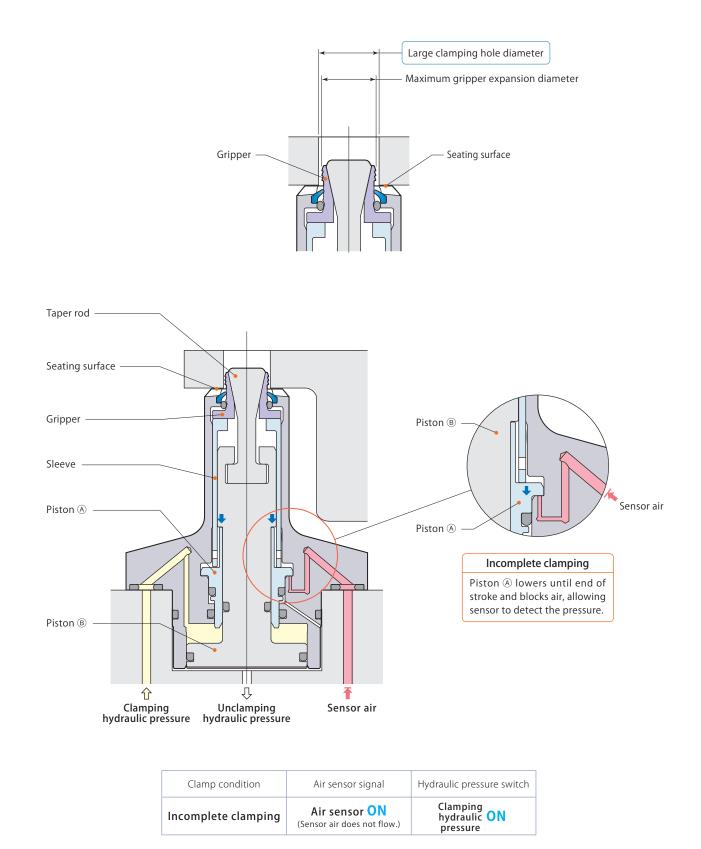


Seating surface can be reground (Max. 0.1 mm)

- ① When seating surface is damaged, the flange section can be dismounted and reground.
- 2 Flange can be easily dismounted and reassembled at production site.

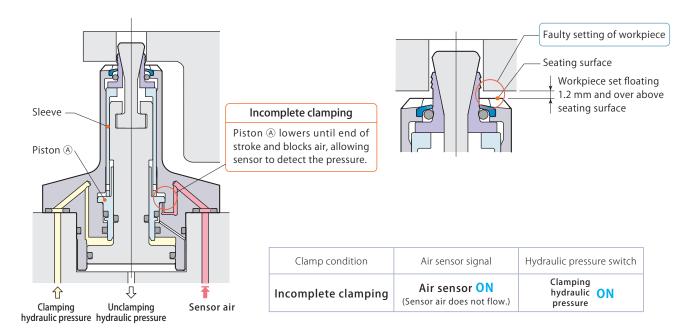

Clamping hole pitch errors can be tolerated

By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function.

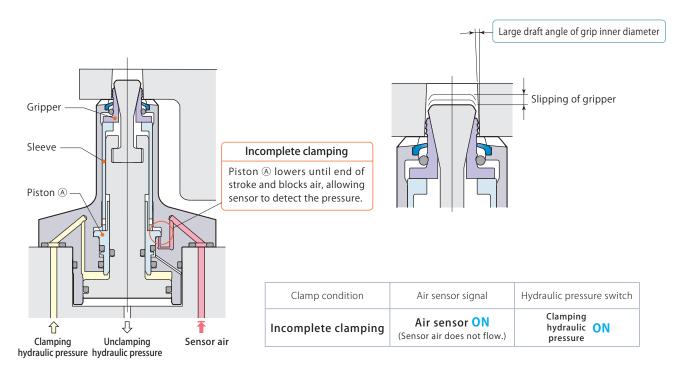

Incorporating strong air blowing circuit

Air blow from a gap between the gripper and scraper clears off metal chips and coolant that stay on the seating surface. Flushing channel is also provided on the seating surface to remove the metal chips and coolants smoothly during workpiece setting.

Detects clamping hole diameter that is too large


When the inner diameter of clamping hole exceeds tolerance value, then gripper will fail to gain grip on workpiece even when extended to maximum reach. Piston (A) lowers until end of stroke as it is pushed down by piston (B) and blocks sensor air, which triggers air sensor and detects incomplete clamping.

CGT Long neck


Detects deformation of workpiece and floating of workpiece

When workpiece has significant deformation or when it is set poorly with gap of 1.2 mm above seating surface, then even when the gripper lowers until end of stroke, the workpiece is not held on seating surface. At this time, piston (A) lowers until end of stroke as it is pushed down by sleeve and blocks sensor air, which triggers air sensor and detects incomplete clamping.

Detects incomplete gripping

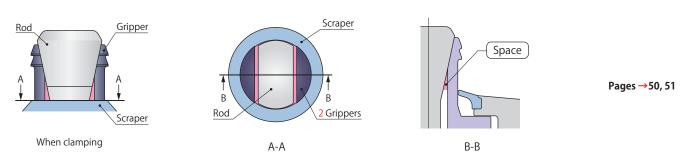
When the inner diameter of clamping hole is slightly larger than allowable value, or when the draft angle of grip inner diameter is large and results in incomplete gripping by the gripper, piston (A) lowers until end of stroke as sleeve pushes it down and sensor air is blocked, which triggers air sensor and detects incomplete clamping.

With the development of the non-constant air blow expansion clamp, air consumption will be significantly decreased. The traditional model ordinarily requires 50L/min (0.3MPa) flow rate (when grip inner diameter is ø12). The new model can reduce

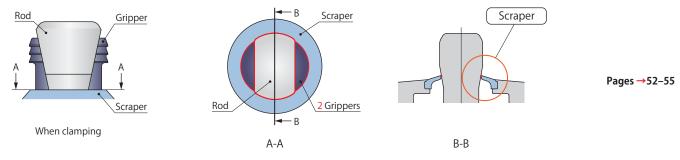
Air blow model

Number of grippers
2 Grippers

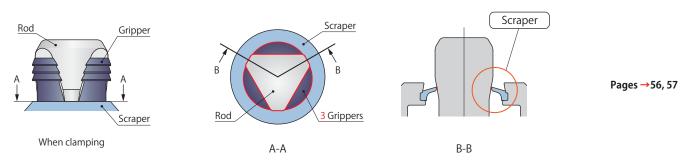
Non-constant air blow model


Number of grippers	Grip inner diameter	Clamping force	Model		
2 Grippers	ø7.0 7.3 7.6	1.89 kN	CGT-F21E Grip inner diameter		
	7.9 8.2	(Hydraulic pressure 7 MPa)			
	ø 8.5	3.04 kN (Hydraulic pressure 6 MPa)	CGT-F22E Grip inner diameter		
	ø9 10	3.54 kN (Hydraulic pressure 7 MPa)			

Number of grippers	Grip inner diameter	Clamping force	Model
3 Grippers	ø11 12 13	3.54 kN (Hydraulic pressure 7 MPa)	CGT-F22E Grip inner diameter


air consumption and help promote energy conservation. However air blow at time of workpiece replacement is a must.

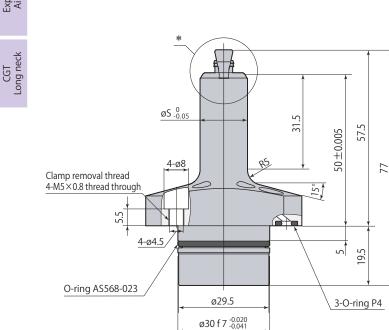
Space where metal chips can intrude is created

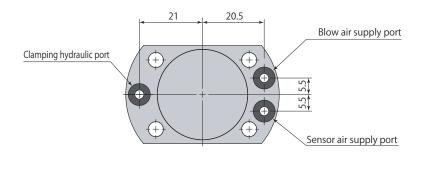


Because of space between scraper, gripper and the rod, air blow must always be performed to prevent intrusion of chips.

Secure chip protection

Because of space between scraper, gripper and the rod, air blow must always be performed to prevent intrusion of chips.



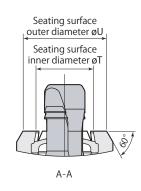

Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

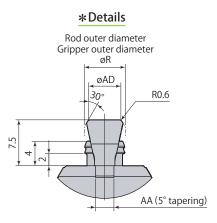
32.6

23

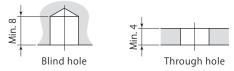
+

- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.


ø51

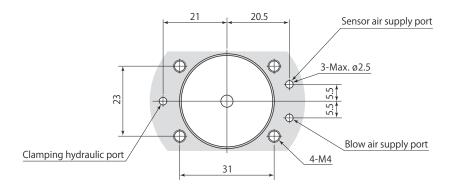

 (\oplus)

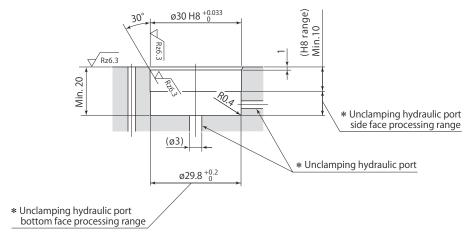
7


 \bigcirc

31

Grip inner diameter usage requirements

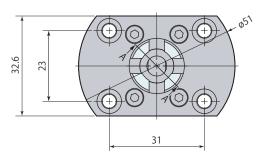


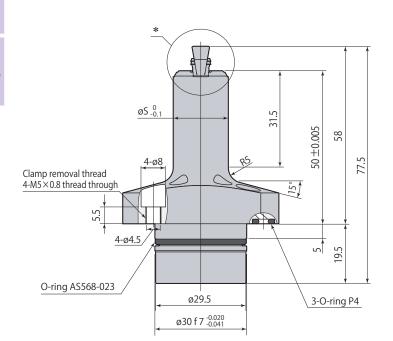

mm

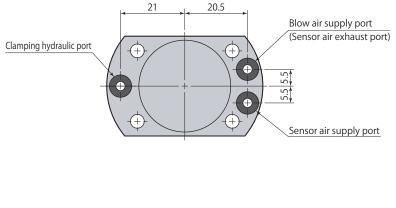
						mm					
Model	CGT- F21-										
Model	055	058	061	064	067	070A					
øR	5	5.3	5.6	5.9	6.2	6.5					
øS	15	15	15	15	15	15.5					
øT	7.8	8.1	8.4	8.7	9	9.3					
øU	11	11.6	12.2	12.8	13	13.5					
AA	2.5	2.5	3	3	3	3					
øAD	3.8	4.1	4.4	4.7	5.0	5.3					

CGT-F21-055,058,061,064,067,070A are made to order.

Mounting details

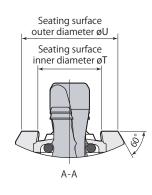


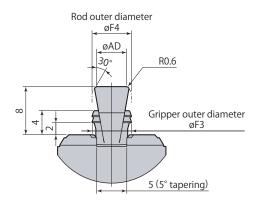

Rz: ISO4287(1997)


*: Unclamping hydraulic port must be made on either side or bottom face.

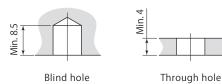
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

• The 30° taper machining must be provided to avoid the damage of the O-ring.



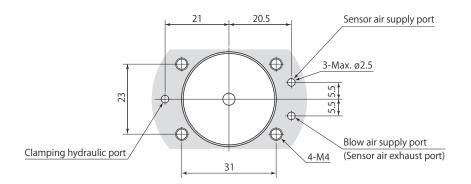


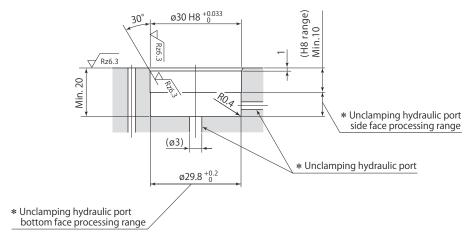
- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.



*Details

Grip inner diameter usage requirements

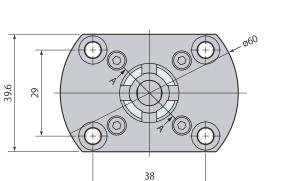

mm

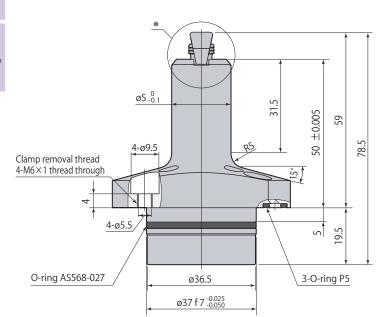

Model		CC	GT-F21E			
MOUEI	070	073	076	079	082	
øF3	6.5	6.8	7.1	7.4	7.7	
øF4	6.55	6.85	7.15	7.45	7.75	
øS	18	18.3	18.6	18.8	18.8	
øТ	10.6	10.9	11.2	11.5	11.8	
øU	16	16.3	16.6	16.9	17.2	
øAD	5.4	5.7	6	6.3	6.6	

52

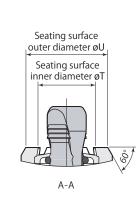
CGT-F21E070,073,076,079,082 are made to order.

Mounting details

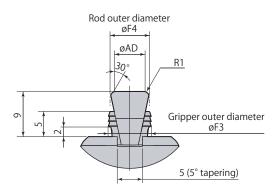

Rz: ISO4287(1997)


*: Unclamping hydraulic port must be made on either side or bottom face.

Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.


• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions



25

*Details

Grip inner diameter usage requirements

CGT-F22E

09

8.5

8.55

20

12.6

18

6.8

Blind hole

085

8

8.05

19.5

12.1

17.5

6.3

Model

øF3

øF4

øS

øΤ

øU

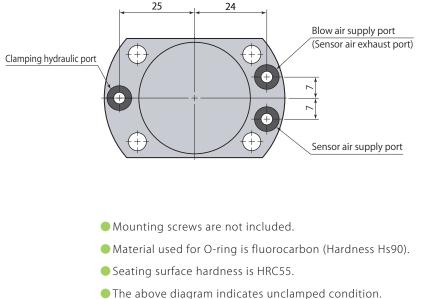
øAD

Through hole

r	Υ	J	r	Υ	J	

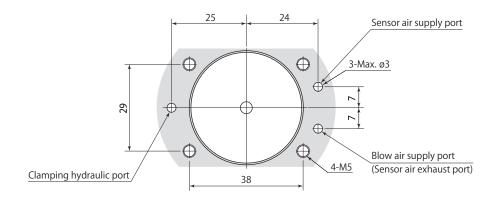
10

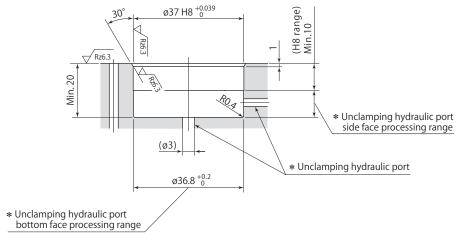
9.5


9.55

21

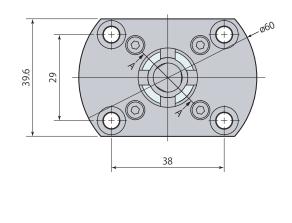
13.6

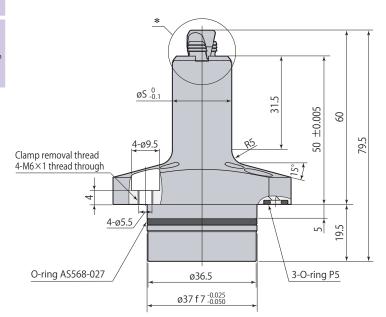

19

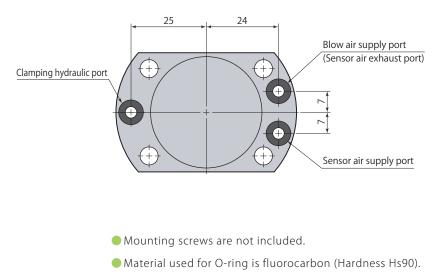

7.8

CGT-F22E085 is made to order.

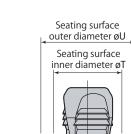
Mounting details

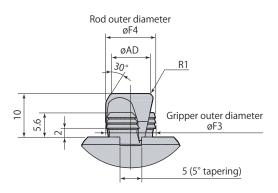

Rz: ISO4287(1997)

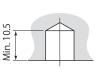

*: Unclamping hydraulic port must be made on either side or bottom face.

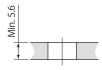

Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

• The 30° taper machining must be provided to avoid the damage of the O-ring.


Dimensions

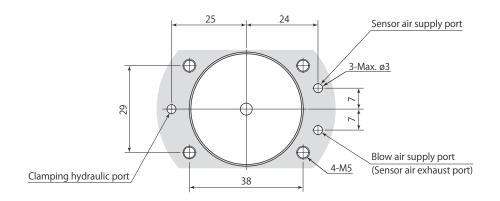

- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

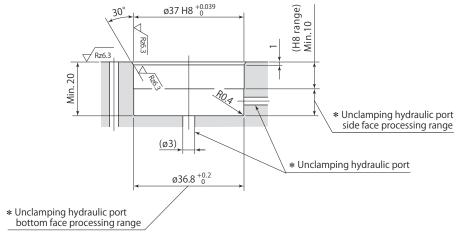

A-A


*Details

ô

Grip inner diameter usage requirements


Through hole


Blind hole

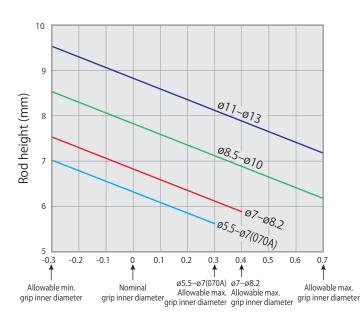
			mm
Model		CGT-F22E	
MOUEI	11	12	13
øF3	10.5	11.5	12.5
øF4	10.55	11.55	12.55
øS	22	23	24
øT	14.6	15.6	16.6
øU	20	21	22
øAD	8.2	9.2	10.2

CGT-F22E13 is made to order.

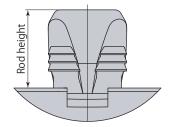
Mounting details

Rz: ISO4287(1997)

*: Unclamping hydraulic port must be made on either side or bottom face.

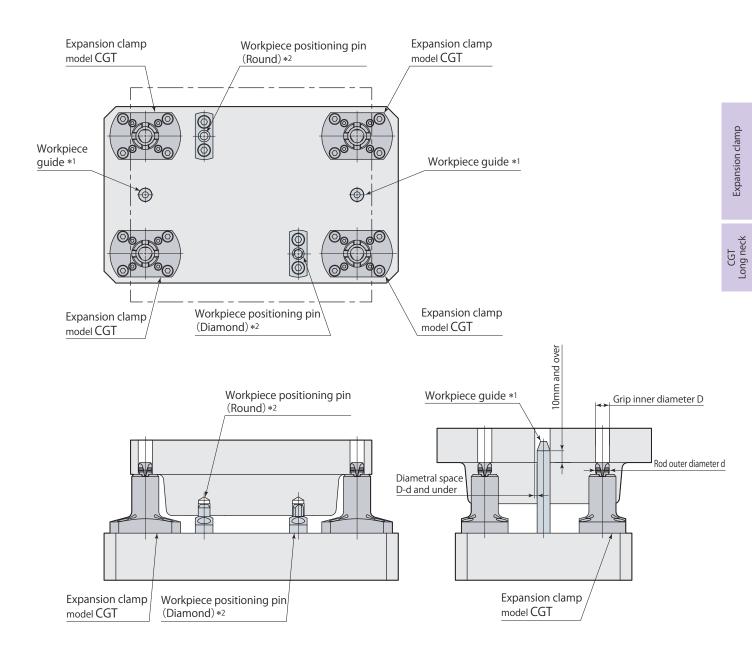

Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

• The 30° taper machining must be provided to avoid the damage of the O-ring.

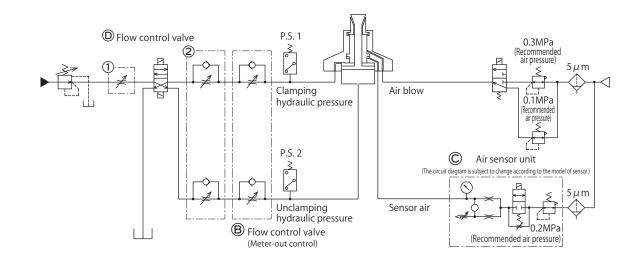

Number of grippers	Gripper set model	Clamp model	Set description
	CGT-F21-J055	CGT-F21-055	
	CGT-F21-J058	CGT-F21-058	
	CGT-F21-J061	CGT-F21-061	
	CGT-F21-J064	CGT-F21-064	$\frac{\text{Scraper} \times 1}{(\text{Refer to table left})}$
	CGT-F21-J067	CGT-F21-067	
	CGT-F21-J070A	CGT-F21-070A	
2 Crippore	CGT-F21EJ070	CGT-F21E070	*CGT-F21-J055–J070A are not included.
2 Grippers	CGT-F21EJ073	CGT-F21E073	
	CGT-F21EJ076	CGT-F21E076	
	CGT-F21EJ079	CGT-F21E079	
	CGT-F21EJ082	CGT-F21E082	
	CGT-F22EJ085	CGT-F22E085	
	CGT-F22EJ09	CGT-F22E09	It is recommended that grippers, scraper and O-ring be replaced after about 200,000 oper-
	CGT-F22EJ10	CGT-F22E10	ations. Replace grippers in sets and not just an
	CGT-F22EJ11	CGT-F22E11	individual gripper. (Refer to the table on the left for the gripper set model.)
3 Grippers	CGT-F22EJ12	CGT-F22E12	·····
	CGT-F22EJ13	CGT-F22E13	

Gripper set replacement

Difference between actual grip inner diameter and nominal grip diameter (mm)

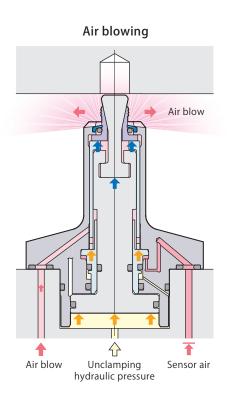

Rod height calculation formula										
ø $5.5-$ ø $7^*:6.32-2.35 imes$ Actual grip inner diameter and nominal grip diameter difference										
ϕ 7 – ϕ 8.2:6.58-2.84× Actual grip inner diameter and nominal grip diameter difference										
$\emptyset 8.5 \emptyset 10:7.82-2.35 imes$ Actual grip inner diameter and nominal grip diameter difference										
\emptyset 11 - \emptyset 13 : 8.82-2.35 × Actual grip inner diameter and nominal grip diameter difference										

*:CGT-F21-070A

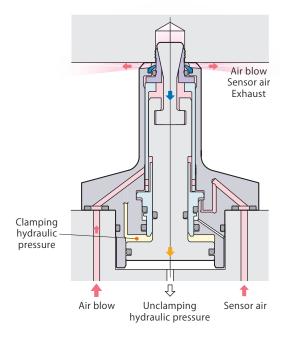

Example:When CGT-F22E10 (Nominal grip diameter : ø10) is clamping ø9.8 hole Rod height = 7.82 - 2.35×(-0.2) = 8.29mm

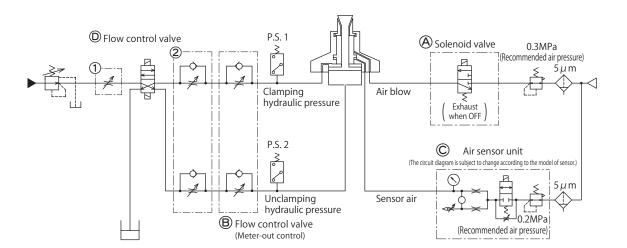
CGT Long neck

System configuration example

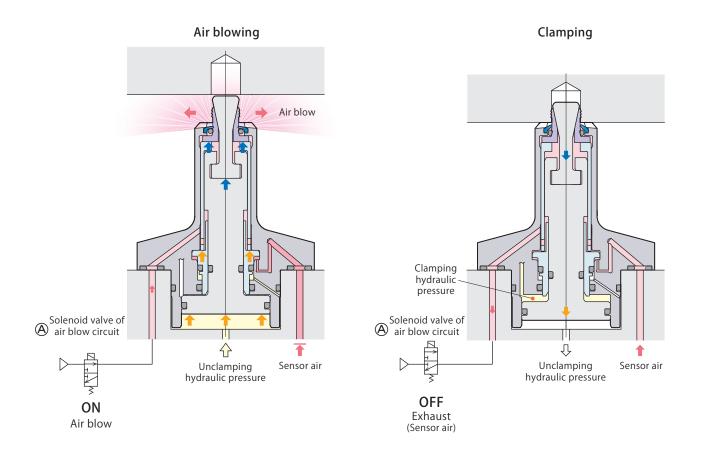


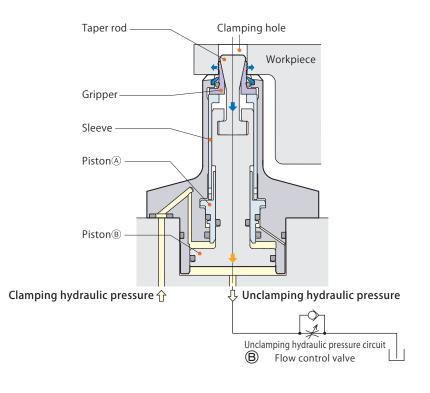
- *1: When using automatic or robotic conveyers, prevent damage to clamp caused from impact by setting workpiece guides. Using the above guide as reference, accurately position the holes when using workpiece guides.
- *2: The expansion clamp does not have a workpiece positioning function. Install workpiece positioning pins (or similar).




Air blow model hydraulic and pneumatic circuit diagram

- Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping. During cutting, if chips adhere to the gripper such as when going through the clamping hole, continue air blowing during processing as well.
- Air blow pressure must be set to 0.1MPa when checking the operation of the clamp with the air sensor.


Clamping


Non-constant air blow model hydraulic and pneumatic circuit diagram

- Air blow will not be necessary during cutting process. Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping to remove metal chips and debris.
- The solenoid valve (a) must be closed when checking the operation of the clamp with the air sensor. Also 3 port type of solenoid valve must be used in the circuit. If 2 port type of the valve is used, sensing air cannot be exhausted and clamp detection function is disabled.

CGT Long neck

- Operation speed must be adjusted by a meter-out type flow control valve (B) being provided in the unclamping circuit. By the adjustment, oil flow in unclamping circuit is squeezed and back pressure is generated. The back pressure acts on the piston (A) of the clamp and makes the gripper expand first then the taper rod strokes down to clamp. If meter-in type flow control valve is installed in the circuit, it dumps the oil rapidly and makes the gripper move very quick which causes incomplete clamping.
- Adjust oil flow when clamping to have the taper rod full stroke in 0.3 sec or over.
 Excessive oil flow to the clamp gives impact load and may cause breakage of the parts.
- Provide additional flow control valve (1) to the place of either (1) or (2) in the circuit diagram to adjust oil flow when a large discharge volume pump is used for the hydraulic circuit. The flow control valve (8) alone may not be good enough to adjust the speed of clamp operation.

Air sensor unit © recommended condition of use

Supplier and	ISA3-F/G series manufactured by SMC
model	GPS2-05, GPS3-E series manufactured by CKD
Air supply pressure	0.2 MPa
Inner diameter of piping	ø4 mm (ISA3-F:ø2.5 mm)
Overall piping length	5 m or less

- Use a solenoid valve with needle for air sensor unit © and control it supplying air all the time in order to eliminate intrusion of chips or coolant.
- There is a case that air sensing cannot be made successfully as designed when it is used out of the usage shown on the left. Contact Technical service center for more details.

CGT ong neck

Operation cycle

The clamp should be controlled with the cycle in the diagram shown below to detect the operation status exactly.

Case of air blow model

	State		Workpiece loading	Clamping	Air blow switching	Clamping completion*1	(Machining)	Air blow switching	Unclamping	Air blow switching	Unclamping completion*2	Air blow switching	Workpiece unloading
	Workpiece	Clamp											
	clamp	Unclamp											
*4	Air blow	0.3MPa			_					_			
*4	All blow	0.1MPa											
	Sensor air	ON											
	Sensor all	OFF											
	Clamping h pressure P.S		OFF			0	N				OFF	:	
*5	Unclamping hydraulic pressure P.S. 2		ON		OFF				ON				
Air sensor						OFF o	r ON* ³				ON		

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=OFF

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON Air sensor=ON

*3 : OFF : Complete clamping ON : Incomplete clamping

*4 : Solenoid valve control *5 : Hydraulic pressure switch, Air sensor signal

Case of non-constant air blow model

State			Workpiece loading	Clamping	Air blow OFF	Clamping completion*1	(Machining)	Air blow ON	Unclamping	Air blow OFF	Unclamping completion*2	Air blow ON	Workpiece unloading
	Workpiece												
	clamp	Unclamp											
*4	Air blow	ON								\neg			
*4	AII DIOW	OFF											
	Concoroir	ON											
	Sensor air	OFF											
	Clamping h pressure P.		OFF			0	N				OFF		
*5	Unclamping hydraulic pressure P.S. 2		ON			OI	FF				ON		
Air sensor					OFF o	r ON*3				ON			

*1: Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=OFF

- *2: Unclamping completion: P.S. 1=OFF P.S. 2=ON Air sensor=ON
- *****3 : OFF : Complete clamping ON : Incomplete clamping
- *4 : Solenoid valve control *5 : Hydraulic pressure switch, Air sensor signal

Expansion clamp

Caution in use

- Be sure to make inner diameter of air blow circuit 4 mm and over except for clamp mounting surface.
- Set the workpiece in such a way that the clamping hole of workpiece is perpendicular to seating surface. Clamping in tilted condition results in uneven contact of gripper with hole, which leads to concentration of load that may cause damage.
- Verify that there are no metal chips or debris on seating surface of clamping hole and clamp body before setting workpiece. Allowing intrusion of metal chips results in insecure clamping, which can lead to low grade of machining accuracy.
- Flaring (Biting) of gripper into workpiece varies depending on workpiece material or thermal processing conditions. With regards to conditions of workpiece and clamping hole, refer to page →41. Secure clamping is not possible when workpiece or clamping hole that does not satisfy these conditions is used.
- If clamping hole serves as taper hole (cast draft hole with gradient), then perform test clamping using applicable workpiece beforehand to verify that there are no problems with operations.
- Deformation may occur if the thickness of clamping hole section of workpiece is extremely thin. Use applicable workpiece to perform test clamping beforehand to verify that there are no deformations in thin portion.
- Supply the dry and filtered air. Particulate size 5 μ m or less is recommended.
- Measure seating surface flatness with hydraulic pressure applied on clamping side, or by applying hydraulic pressure on neither clamping nor unclamping side.

Perform unclamping completion detection, clamping completion detection and incomplete clamping detection with combination actions of pressure switch and sensor shown in table below. (Refer to hydraulic and pneumatic circuit diagram on pages →60, 61 for details.)

Applications	Pressure switch 1 (P.S. 1)	Pressure switch 2 (P.S. 2)	Air sensor
Unclamping completion detection	OFF	ON	ON
Clamping completion detection	ON	OFF	OFF
Incomplete clamping detection	ON	OFF	ON

Expansion clamp

Double acting 7MPa

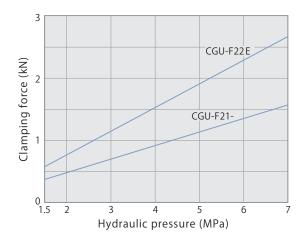
model CGU

Expansion clamp Eccentric

Specifications

Size Grip inner diameter : Number of grippers : Air blow model 1 07 08 : 4 Gripper CGU - F2 : 2 Gripper 09 10 2 Ε : Non-constant 12 13 : 3 Gripper 11 air blow model

indicates made to order.

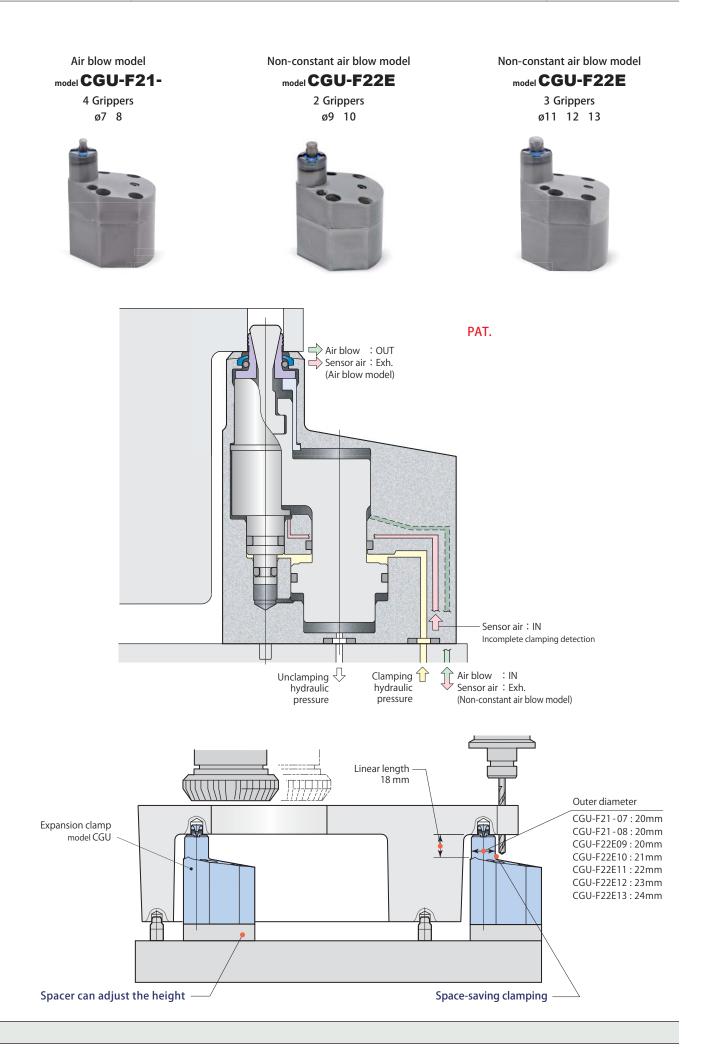

M. 1.1	Model Size			F21-			CGU-F22E				
Model	Grip inner dia	meter	07	08	09	10	11	12	13		
Number of grippers		4 Grip	4 Grippers		opers		3 Grippers	1			
Clamping force (hydraulic pressure 71	MPa)	kN	1.	57			2.76				
Radial expansion forc (hydraulic pressure 7)	e MPa)	kN	5.	34			9.30				
Taper rod stroke		mm			1	4.8					
Clamp stroke		mm				1.2					
	Clamp	cm ³	1.	1.5			2.6				
Cylinder capacity	Unclamp	cm ³	2.	3	3.5						
Allowable eccentricity	y*1	mm	±0.4								
Recommended air blo	ow pressure	MPa	0.3								
Recommended senso	r air pressure	MPa	0.2								
Mass		kg	0.88								
Recommended tighte of mounting screws ²²	ning torque	N·m	7								
Workpiece material			Aluminum, s	teel and othe	rs (HRC30 or b	oelow) Cast ir	on also usabl	e depending c	on conditions		
Allowable min. grip ir	nner diameter	mm	6.7	7.7	8.7	9.7	10.7	11.7	12.7		
Allowable max. grip in	7.7	8.7	9.7	10.7	11.7	12.7	13.7				
Grip inner diameter tapering angle (Draft angle)			3° below								
Grip inner diameter circularity			0.1 below								

● Pressure range:1.5–7 MPa ● Proof pressure:10.5 MPa ● Operating temperature:0–70 ℃

Fluid used: General mineral based hydraulic oil (ISO-VG32 equivalent)

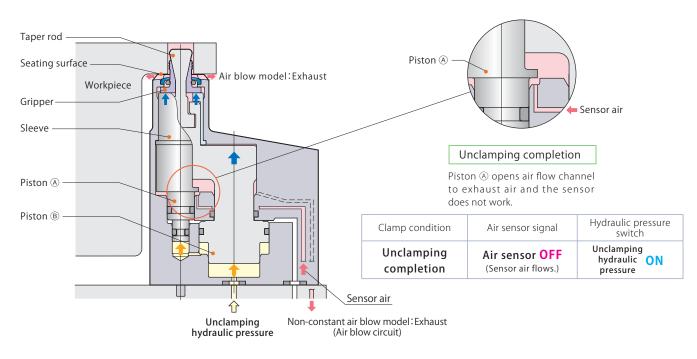
Please inquire if above terms are not applied.

*1:By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function. *2:ISO R898 class 12.9

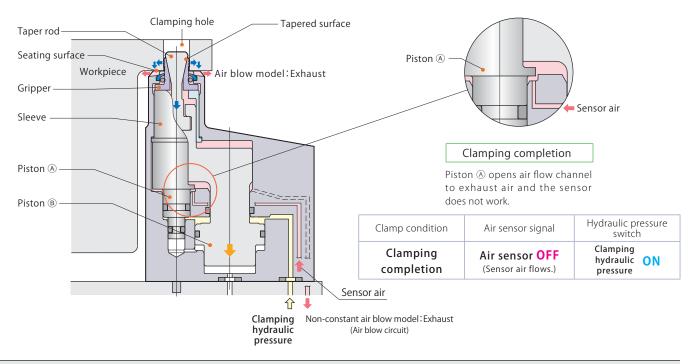


Hydraulic pressure M	ИРа	1.5	2	3	4	5	6	7
CGU-F21- Clamping force F=0.224×P	kΝ	0.34	0.45	0.67	0.90	1.12	1.34	1.57
CGU-F22E Clamping force F=0.394×P	kΝ	0.59	0.79	1.18	1.58	1.97	2.36	2.76

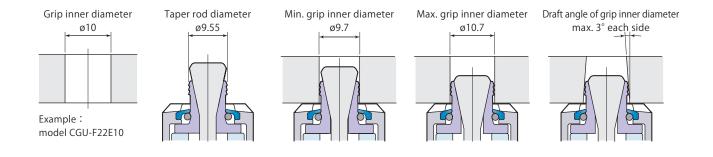
P:Hydraulic pressure (MPa)


Expansion clamp

Expansion clamp Eccentric


Workpiece setting (Unclamping completion)

- 1 Taper rod and gripper are raised by pistons A, B and sleeve.
- 2 Set the workpiece onto the seating surface.


Workpiece holding (Clamping completion)

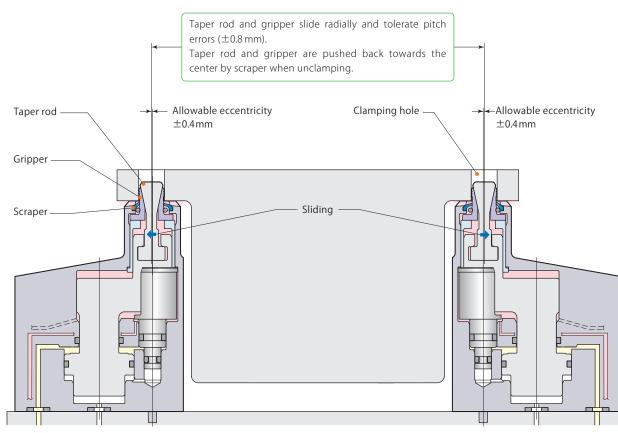
- ① Piston ⑧ and taper rod lower with piston ⑧ being held at upper stroke end position by clamping hydraulic pressure.
- ② The gripper expands horizontally along the tapered surface to grip inner face of clamping hole holding its position at upper stroke end by piston (A) and sleeve.
- ③ The gripper securely grips the inner face of clamping hole and pulls the workpiece down firmly onto the seating surface.
- ④ Workpiece holding is completed by the sensor air, clamping and unclamping hydraulic pressure.


Large gripper expansion stroke

The gripper expands horizontally 1.0mm, which enables the accommodation of dimensional variations in diecast bore diameters and ensures workpiece is held securely.

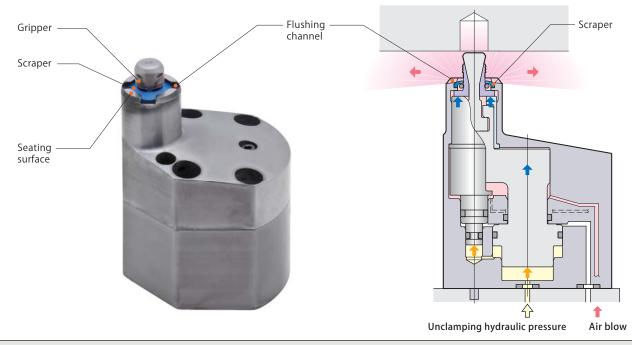
Taper rod and gripper with superior durability

- ① The holding force of expansion clamp is transmitted from tapered surface to gripper, making it possible for the gripper to hold onto inner face of clamping hole and hold the workpiece on the seating surface for secure workpiece clamping.
- ② Special steel with superior abrasion resistance is used for gripper to improve durability.



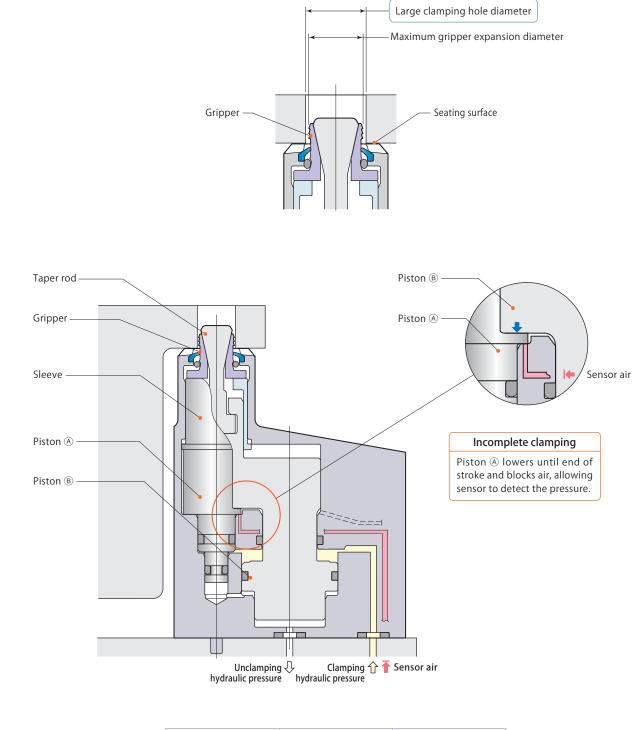
Seating surface can be reground (Max. 0.1 mm)

- ① When seating surface is damaged, the flange section can be dismounted and reground.
- ② Flange can be easily dismounted and reassembled at production site.


Clamping hole pitch errors can be tolerated

By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function.

Incorporating strong air blowing circuit

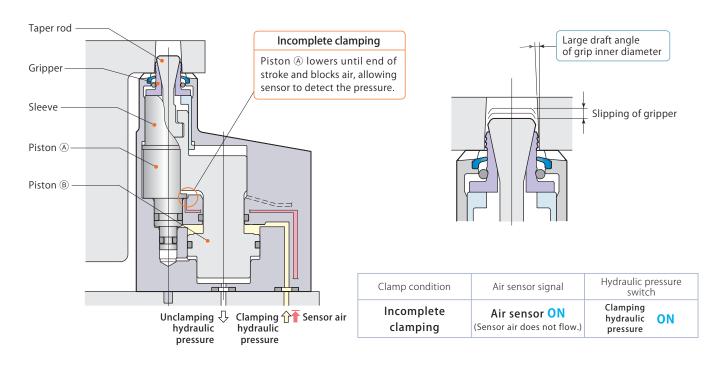

Air blow from a gap between the gripper and scraper clears off metal chips and coolant that stay on the seating surface. Flushing channel is also provided on the seating surface to remove the metal chips and coolants smoothly during workpiece setting.

To download CAD data / To get updated information, visit www.pascaleng.co.jp

Detects clamping hole diameter that is too large

When the inner diameter of clamping hole exceeds tolerance value, then gripper will fail to gain grip on workpiece even when extended to maximum reach. Piston (a) lowers until end of stroke as it is pushed down by piston (b) and blocks sensor air, which triggers air sensor and detects incomplete clamping.

Clamp condition	Air sensor signal	Hydraulic pressure switc		
Incomplete clamping	Air sensor ON (Sensor air does not flow.)	Clamping hydraulic ON pressure		


Detects deformation of workpiece and floating of workpiece

When workpiece has significant deformation or when it is set poorly with gap of 1.2 mm above seating surface, then even when the gripper lowers until end of stroke, the workpiece is not held on seating surface. At this time, piston (A) lowers until end of stroke as it is pushed down by sleeve and blocks sensor air, which triggers air sensor and detects incomplete clamping.

Detects incomplete gripping

When the inner diameter of clamping hole is slightly larger than allowable value, or when the draft angle of grip inner diameter is large and results in incomplete gripping by the gripper, piston (A) lowers until end of stroke as sleeve pushes it down and sensor air is blocked, which triggers air sensor and detects incomplete clamping.

With the development of the non-constant air blow expansion clamp, air consumption will be significantly decreased. The traditional model ordinarily requires 50L/min (0.3MPa) flow rate (when grip inner diameter is ø12). The new model can reduce

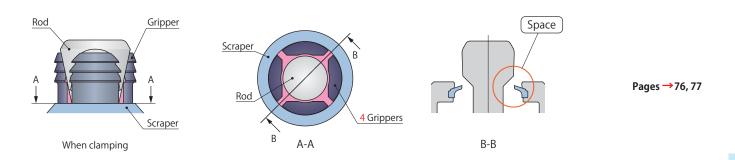
Air blow model

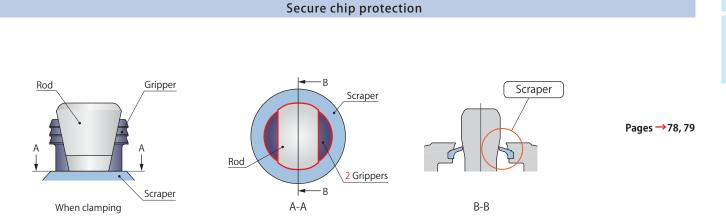
Number of grippers	
4 Grippers	

CGU Eccentric

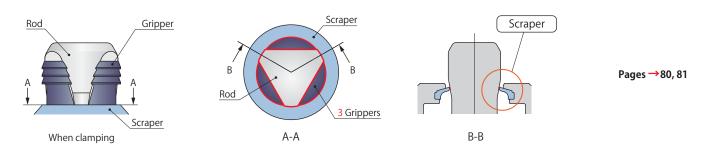
Non-constant air blow model

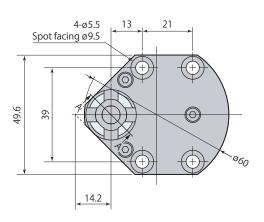
-	

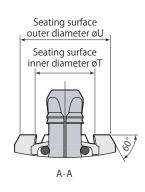

Number of grippers	Grip inner diameter	Clamping force	Model
2 Grippers	ø9 10	2.76 kN (Hydraulic pressure 7 MPa)	CGU-F22E Grip inner diameter

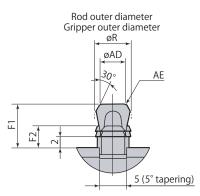

Number of grippers	Number of grippers Grip inner diameter		Model
3 Grippers	ø11 12 13	2.76 kN (Hydraulic pressure 7 MPa)	CGU-F22E Grip inner diameter

air consumption and help promote energy conservation. However air blow at time of workpiece replacement is a must.

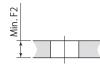

Space where metal chips can intrude is created


Because of space between scraper, gripper and the rod, air blow must always be performed to prevent intrusion of chips.


Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

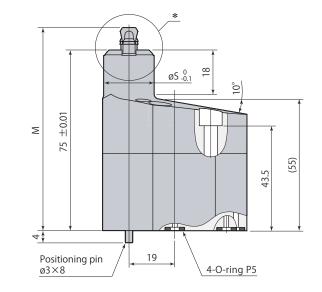

Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

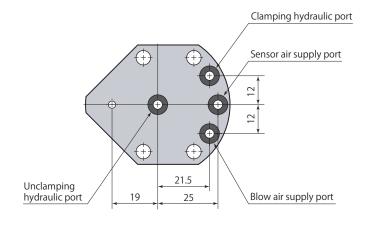
Dimensions



*Details

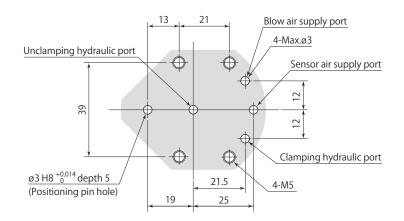
Grip inner diameter usage requirements

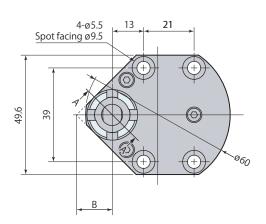




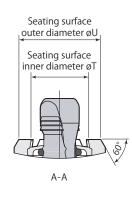
Blind hole

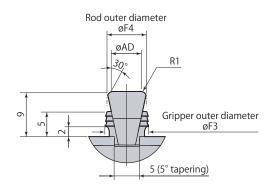
Through hole

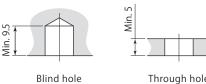

		mm					
Model	CGU-F21-						
Model	07	08					
F1	8	9					
F2	4	5					
М	83	84					
øR	6.5	7.5 20					
øS	20						
øΤ	10.6	11.6					
øU	18	18					
øAD	4.8	5.8					
AE	R0.6	R1					
CGU-F21-07, 08 are made to order.							



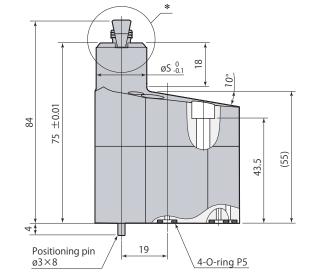
- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

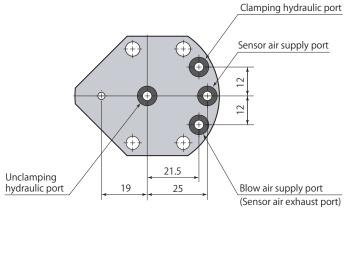

Mounting details


• The mounting surface finish must be no rougher than Rz6.3 (ISO4287:1997).

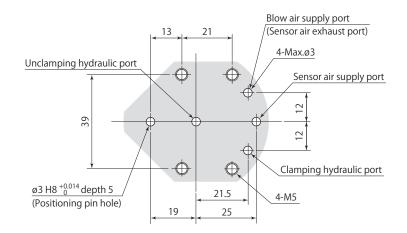

Dimensions

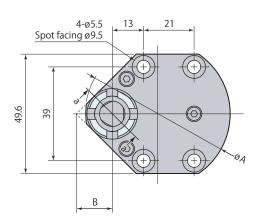
*Details



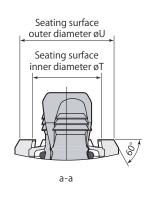

Grip inner diameter usage requirements

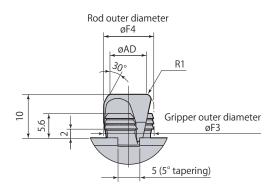
		mm				
Model	CGU-F					
	09	10				
В	14.2	14.9				
øF3	8.5	9.5				
øF4	8.55	9.55				
øS	20	21				
øΤ	12.6	13.6				
øU	18	19				
øAD	6.8 7.8					
CGU-F22E	09, 10 are made to	order.				

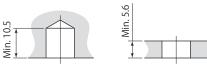



- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

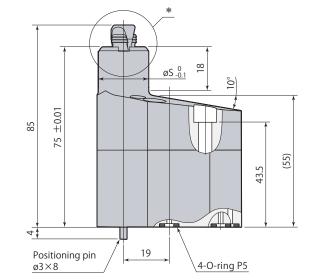
Expansion clamp Non-constant air blow model

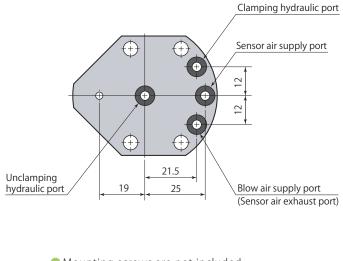

Mounting details


• The mounting surface finish must be no rougher than Rz6.3 (ISO4287:1997).


Dimensions

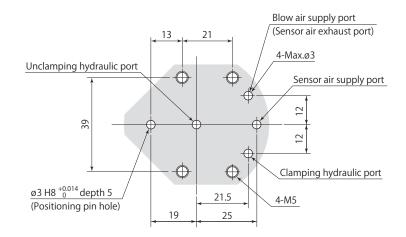
*Details


Grip inner diameter usage requirements



Blind hole

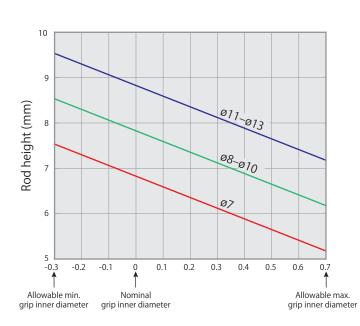
mm							
Model	CGU-F22E						
Model	11	12	13				
øA	60	62	62				
В	15.6	16.3	17				
øF3	10.5	11.5	12.5				
øF4	10.55	11.55	12.55				
øS	22	23	24				
øT	14.6	15.6	16.6				
øU	20	21	22				
øAD	8.2	9.2	10.2				



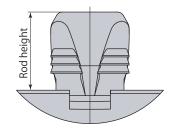
- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

Expansion clamp Non-constant air blow model

Mounting details

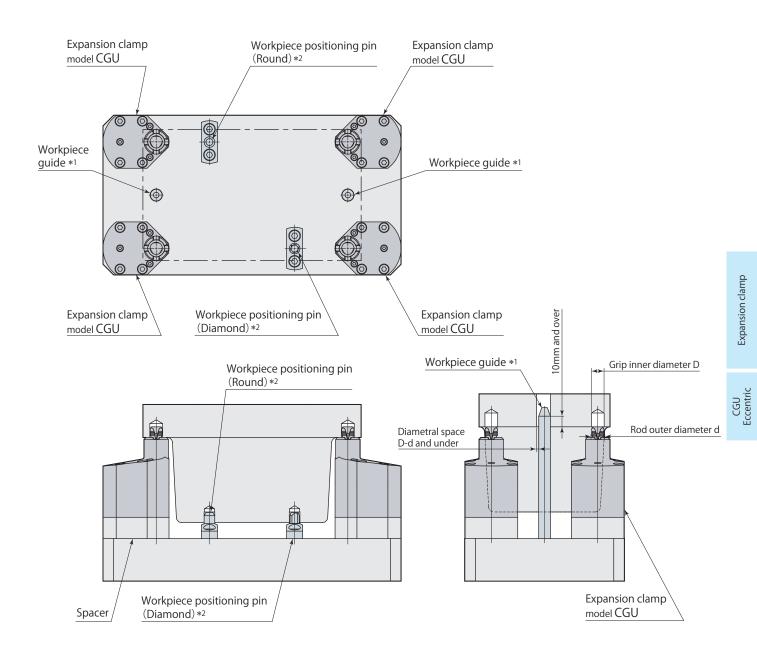


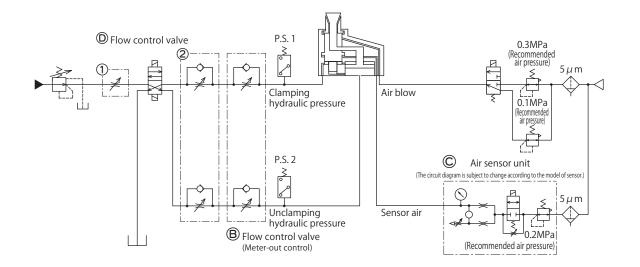
• The mounting surface finish must be no rougher than Rz6.3 (ISO4287:1997).


Number of grippers	Gripper set model	Clamp model	Set description
4 Crippore	CGU-F21-J07	CGU-F21-07	Scraper × 1 Gripper
4 Grippers	CGU-F21-J08	CGU-F21-08	(Refer to table left) O-ring × 1
2 Grinnard	CGU-F22EJ09	CGU-F22E09	
2 Grippers	CGU-F22EJ10	CGU-F22E10	
	CGU-F22EJ11	CGU-F22E11	It is recommended that grippers, scraper and
3 Grippers	CGU-F22EJ12	CGU-F22E12	O-ring be replaced after about 200,000 oper- ations. Replace grippers in sets and not just an individual gripper. (Refer to the table on the
	CGU-F22EJ13	CGU-F22E13	left for the gripper set model.)

Grip inner diameter & rod height when clamping

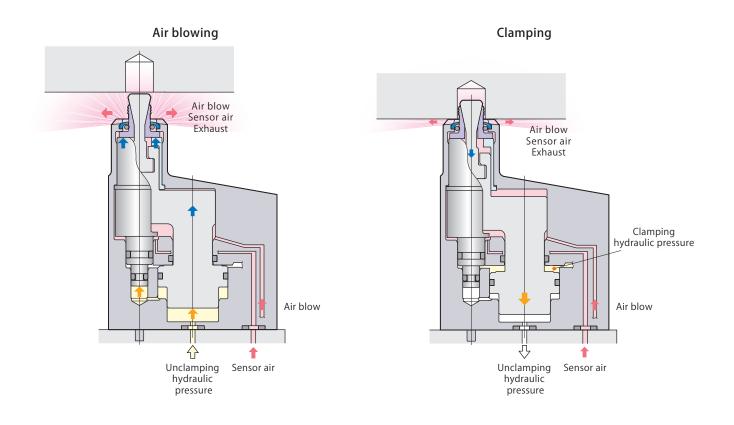
Gripper set replacement

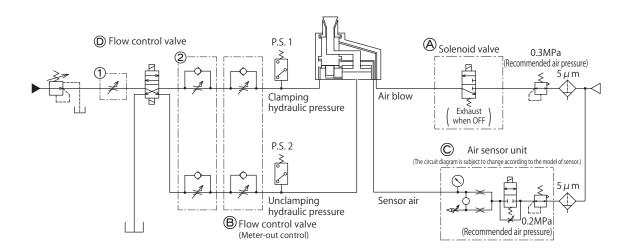

Difference between actual grip inner diameter and nominal grip diameter (mm)


Rod height calculation formula						
ø7	:6.82-2.35 imes Actual grip inner diameter and nominal grip diameter difference					
ø8 – ø	$10:7.82-2.35 imes { m Actual grip inner diameter and nominal grip diameter difference}$					
ø11 – ø	13:8.82-2.35 $ imes$ Actual grip inner diameter and nominal grip diameter difference					

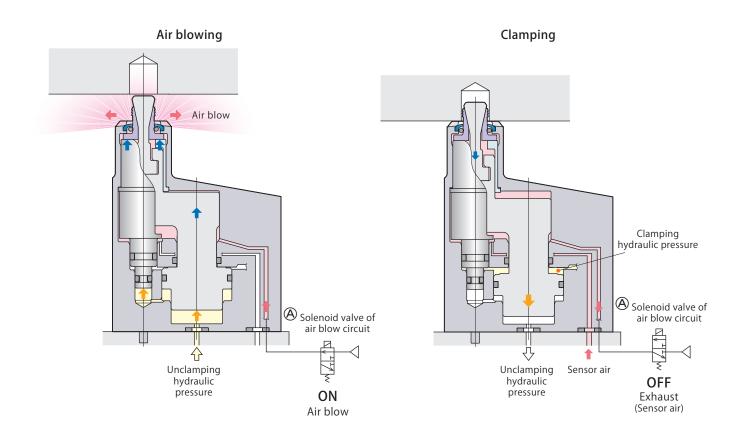
Example: When CGU-F22E10 (Nominal grip diameter : \emptyset 10) is clamping \emptyset 9.8 hole Rod height = 7.82 - 2.35×(-0.2) = 8.29mm

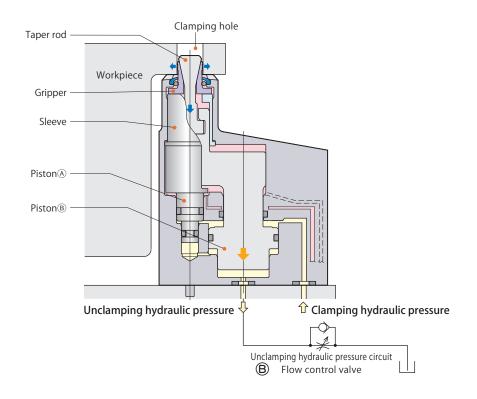
System configuration example




- *1: When using automatic or robotic conveyers, prevent damage to clamp caused from impact by setting workpiece guides. Using the above guide as reference, accurately position the holes when using workpiece guides.
- *2: The expansion clamp does not have a workpiece positioning function. Install workpiece positioning pins (or similar).

Air blow model hydraulic and pneumatic circuit diagram


- Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping. During cutting, if chips adhere to the gripper such as when going through the clamping hole, continue air blowing during processing as well.
- Air blow pressure must be set to 0.1MPa when checking the operation of the clamp with the air sensor.



Non-constant air blow model hydraulic and pneumatic circuit diagram

- Air blow will not be necessary during cutting process. Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping to remove metal chips and debris.
- The solenoid valve (a) must be closed when checking the operation of the clamp with the air sensor. Also 3 port type of solenoid valve must be used in the circuit. If 2 port type of the valve is used, sensing air cannot be exhausted and clamp detection function is disabled.

- Operation speed must be adjusted by a meter-out type flow control valve [®] being provided in the unclamping circuit. By the adjustment, oil flow in unclamping circuit is squeezed and back pressure is generated. The back pressure acts on the piston [®] of the clamp and makes the gripper expand first then the taper rod strokes down to clamp. If meter-in type flow control valve is installed in the circuit, it dumps the oil rapidly and makes the gripper move very quick which causes incomplete clamping.
- Adjust oil flow when clamping to have the taper rod full stroke in 0.3 sec or over.
 Excessive oil flow to the clamp gives impact load and may cause breakage of the parts.
- Provide additional flow control valve (1) to the place of either (1) or (2) in the circuit diagram to adjust oil flow when a large discharge volume pump is used for the hydraulic circuit. The flow control valve (8) alone may not be good enough to adjust the speed of clamp operation.

Air sensor unit © recommended condition of use

Supplier and model	ISA3-F/G series manufactured by SMC
	GPS2-05, GPS3-E series manufactured by CKD
Air supply pressure	0.2 MPa
Inner diameter of piping	ø4 mm (ISA3-F:ø2.5 mm)
Overall piping length	5 m or less

- Use a solenoid valve with needle for air sensor unit © and control it supplying air all the time in order to eliminate intrusion of chips or coolant.
- There is a case that air sensing cannot be made successfully as designed when it is used out of the usage shown on the left. Contact Technical service center for more details.

Operation cycle

The clamp should be controlled with the cycle in the diagram shown below to detect the operation status exactly.

Case of air blow model

	State		Workpiece loading	Clamping	Air blow switching	Clamping completion ^{*1}	(Machining)	Air blow switching	Unclamping	Unclamping completion* ²	Workpiece unloading
	Workpiece	Clamp									
	clamp	Unclamp									
*4	Air blow	0.3MPa			_						
*4	AILDIOM	0.1MPa									
	Sensor air	ON									
	Sensor all	OFF									
	Clamping hydraulic pressure P.S. 1		OFF			0	N			OFF	
*5	Unclamping pressure P.S		ON			0	FF			ON	
	Air sensor					OFF o	r ON*³				

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=OFF

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON

*3 : OFF : Complete clamping ON : Incomplete clamping

*4 : Solenoid valve control *5 : Hydraulic pressure switch, Air sensor signal

Case of non-constant air blow model

	State		Workpiece loading	Clamping	Air blow OFF	Clamping completion ^{*1}	(Machining)	Air blow ON	Unclamping	Unclamping completion* ²	Workpiece unloading
	Workpiece Clamp						·				
	clamp	Unclamp									
ata 4	Airblow	ON									
*4	Air blow	OFF									
	ON ON										
	Sensor air	OFF									
	Clamping h pressure P.		OFF			0	N			OFF	
*5	*5 Unclamping hydraulic pressure P.S. 2		ON			OI	FF			ON	
	Air sensor					OFF o	r ON*3				

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=OFF

- *2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON
- *3 : OFF : Complete clamping ON : Incomplete clamping
- *4 : Solenoid valve control *5 : Hydraulic pressure switch, Air sensor signal

Caution in use

- Be sure to make inner diameter of air blow circuit 4 mm and over except for clamp mounting surface.
- Set the workpiece in such a way that the clamping hole of workpiece is perpendicular to seating surface. Clamping in tilted condition results in uneven contact of gripper with hole, which leads to concentration of load that may cause damage.
- Verify that there are no metal chips or debris on seating surface of clamping hole and clamp body before setting workpiece. Allowing intrusion of metal chips results in insecure clamping, which can lead to low grade of machining accuracy.
- Flaring (Biting) of gripper into workpiece varies depending on workpiece material or thermal processing conditions. With regards to conditions of workpiece and clamping hole, refer to page →67 Secure clamping is not possible when workpiece or clamping hole that does not satisfy these conditions is used.
- If clamping hole serves as taper hole (cast draft hole with gradient), then perform test clamping using applicable workpiece beforehand to verify that there are no problems with operations.
- Deformation may occur if the thickness of clamping hole section of workpiece is extremely thin. Use applicable workpiece to perform test clamping beforehand to verify that there are no deformations in thin portion.
- Supply the dry and filtered air. Particulate size 5μ m or less is recommended.
- Measure seating surface flatness with hydraulic pressure applied on clamping side, or by applying hydraulic pressure on neither clamping nor unclamping side.

● Perform unclamping completion detection, clamping completion detection and incomplete clamping detection with combination actions of pressure switch and sensor shown in table below. (Refer to hydraulic and pneumatic circuit diagram on page →84, 85 for details.)

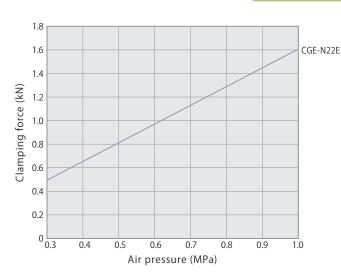
Applications	Pressure switch 1 (P.S. 1)	Pressure switch 2 (P.S. 2)	Air sensor
Unclamping completion detection	OFF	ON	_
Clamping completion detection	ON	OFF	OFF
Incomplete clamping detection	ON	OFF	ON

air Expansion clamp

Double acting 1MPa

model CGE

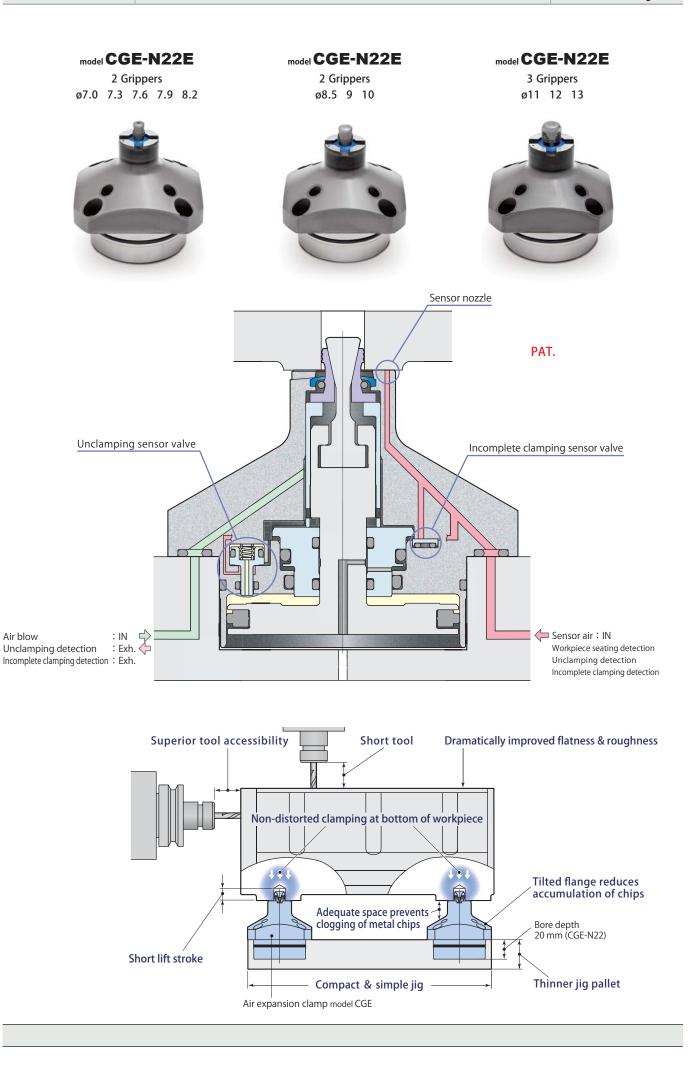
Air expansion clamp


Specifications

A						C	GE-N22	2E				
Model	Grip inner diameter	070	073	076	079	082	085	09	10	11	12	13
Number of grippers			1	1	2 Gri	ppers				3	Grippe	rs
Clamping force (air pre	essure 0.5MPa) ki						0.81					
Radial expansion force	e (air pressure 0.5MPa) kl			2.81					2	.52		
Taper rod stroke	mn	1					4.8					
Clamp stroke mm		1					1.2					
Clamp cm ³		3					8.7					
Cylinder capacity	Cylinder capacity Unclamp cm ³		9.7									
Allowable eccentricity	*1 mn	1	±0.5									
Recommended air blo	w pressure MP	1	0.3									
Recommended sensor	air pressure MP	1	0.2									
Mass	k		0.74 0.75									
Recommended tighter torque of mounting sc	ning N•n rews*2 N•n	1					7					
Workpiece material		Alu	uminum	, steel a	nd oth	ers (HR	225 or b	elow).	Cast ir	on are	not usa	ble.
Allowable min. grip in	ner diameter mn	6.7	7.0	7.3	7.6	7.9	8.2	8.7	9.7	10.7	11.7	12.7
Allowable max. grip inner diameter mm		7.4	7.7	8.0	8.3	8.6	9.2	9.7	10.7	11.7	12.7	13.7
Grip inner diameter tapering angle (Draft angle)			3° or below									
Grip inner diameter circularity			0.1 or below									
Pressure range:0.3–	1 MPa • Proof press		1Pa	Opera	ating te	mperat	ure:0–7	°℃	● Flui	d used:	Air	

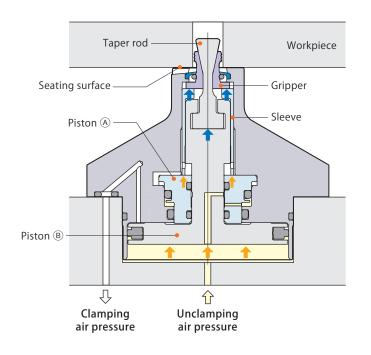
Please inquire if above terms are not applied.

*1:By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function. *2:ISO R898 class 12.9

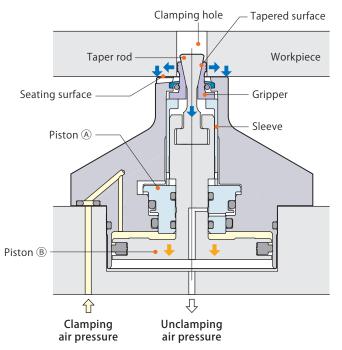

Clamping force & air pressure

Air pressure	MPa	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Clamping force F=1.617×P	kN	0.49	0.65	0.81	0.97	1.13	1.29	1.46	1.62

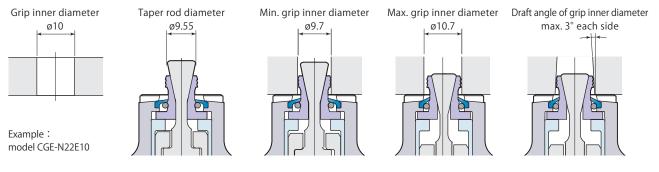
P:Air pressure (MPa)


CGE-N22E

Air expansion clamp

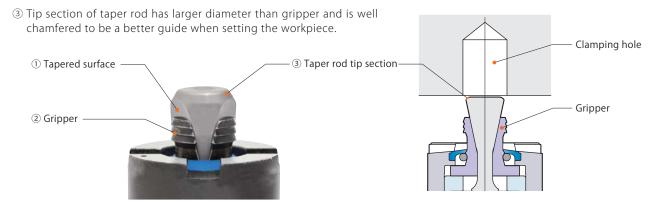

Workpiece setting

- ① Taper rod and gripper are raised by pistons (A), (B) and sleeve. The gripper is drawn inward within the taper rod diameter.
- ② Set the workpiece onto the seating surface.

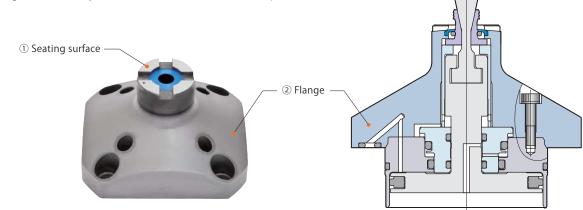

Workpiece holding

- 1 Piston B and taper rod lower with piston A being held at upper stroke end position by clamping air pressure.
- ② The gripper expands horizontally along the tapered surface to grip inner face of clamping hole holding its position at upper stroke end by piston (A) and sleeve.
- ③ The gripper securely grips the inner face of clamping hole and pulls the workpiece down firmly onto the seating surface.

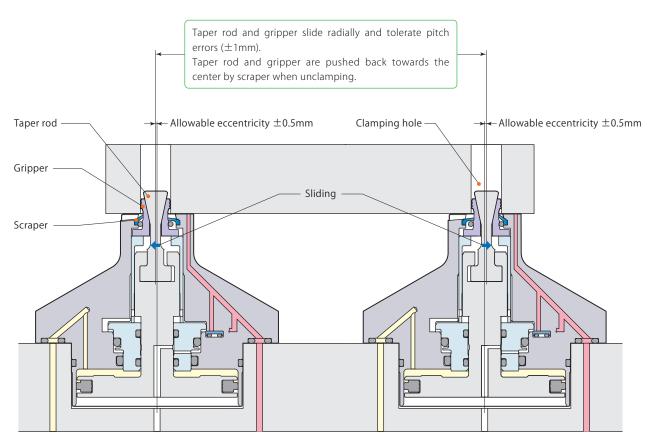
Large gripper expansion stroke


The gripper expands horizontally 1.0mm(*), which enables the accommodation of dimensional variations in diecast bore diameters and ensures workpiece is held securely.

*:0.7mm stroke for CGE-N22E070, 073, 076, 079, 082

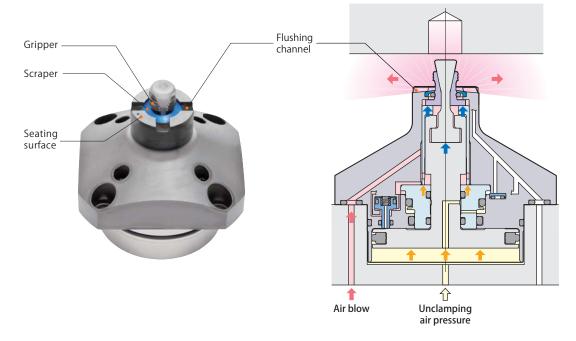

Taper rod and gripper with superior durability

- ① The holding force of expansion clamp is transmitted from tapered surface to gripper, making it possible for the gripper to hold onto inner face of clamping hole and hold the workpiece on the seating surface for secure workpiece clamping.
- 2 Special steel with superior abrasion resistance is used for gripper to improve durability.



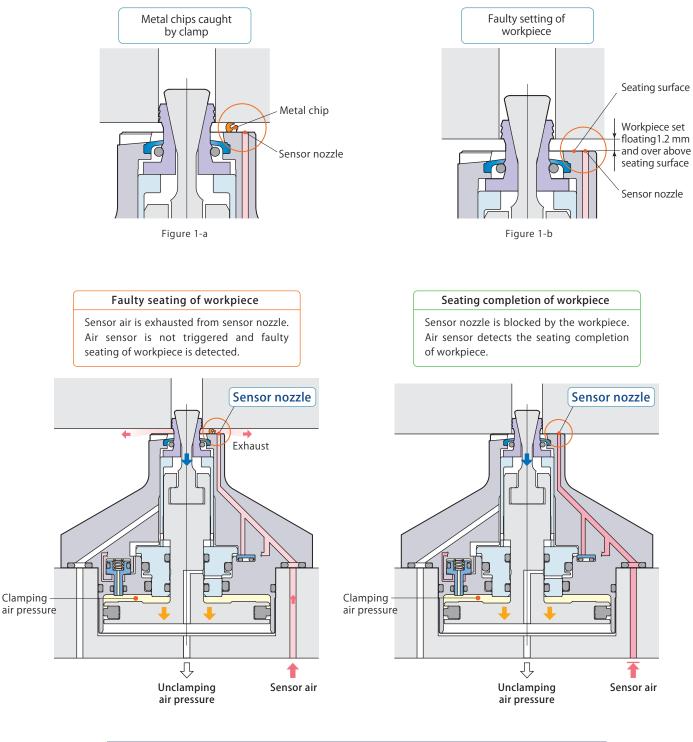
Seating surface can be reground (Max. 0.1 mm)

- ① When seating surface is damaged, the flange section can be dismounted and reground.
- ② Flange can be easily dismounted and reassembled at production site.


Clamping hole pitch errors can be tolerated

By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function.

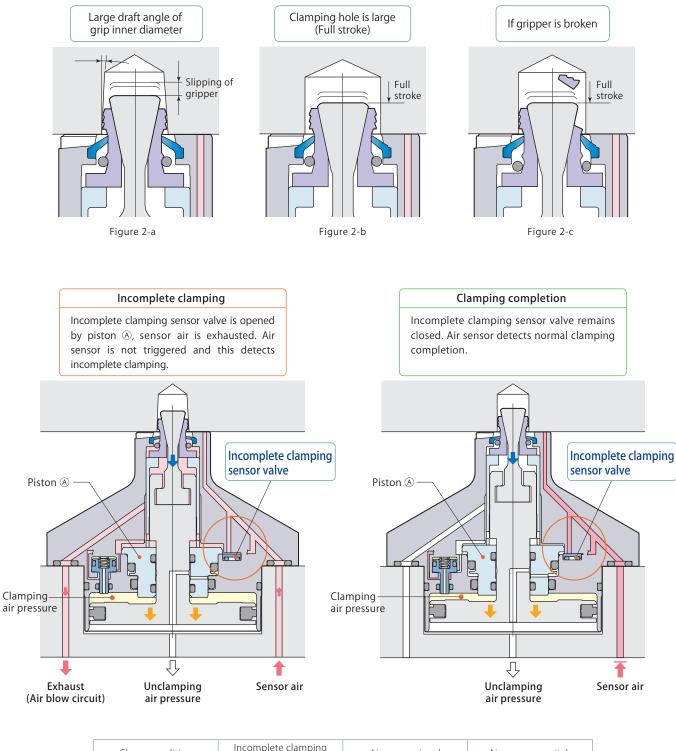
Incorporating strong air blowing circuit


Air blow from a gap between the gripper and scraper clears off metal chips and coolant that stay on the seating surface. Flushing channel is also provided on the seating surface to remove the metal chips and coolants smoothly during workpiece setting.

GGE

Sensor nozzle detects faulty seating of workpiece

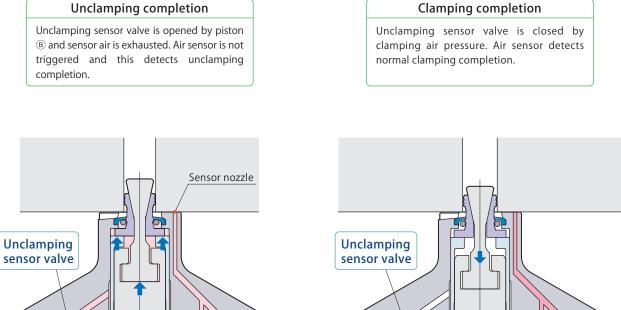
If clamping operation is made when metal chips are under the workpiece (Figure 1-a), or when the workpiece is set 1.2mm and over above the seating surface due to its distortion (Figure 1-b), the workpiece cannot sit fully on the surface and air is exhausted from the sensor nozzle. Incomplete workpiece seating is detected.

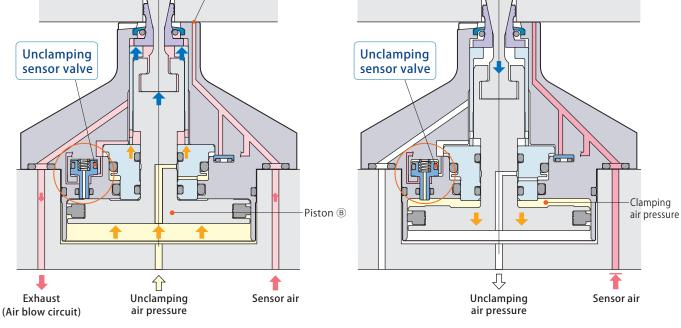

Clamp condition	Sensor nozzle	Air sensor signal	Air pressure switch
Faulty seating of	Open	Air sensor OFF	Clamping
workpiece		(Sensor air flows.)	air pressure ON

Incomplete clamping sensor valve detects incomplete clamping

When gripper fails to grip properly due to large draft angle of grip inner diameter (Figure 2-a), incomplete clamping sensor valve is opened. Sensor air is exhausted and this detects incomplete clamping.

When clamping hole exceeds tolerance value (Figure 2-b), or when gripper is broken (Figure 2-c), incomplete clamping is detected as well.

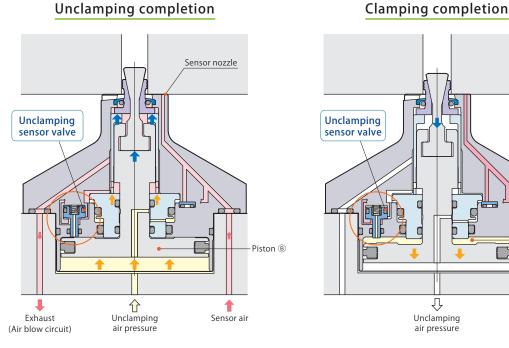



Clamp condition	Incomplete clamping sensor valve	Air sensor signal	Air pressure switch
Incomplete	Open	Air sensor OFF	Clamping
clamping		(Sensor air flows.)	air pressure ON

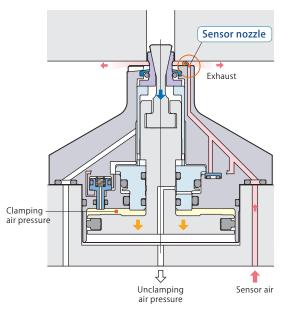
GGE

Unclamping sensor valve detects unclamping operation is complete

Unclamping sensor valve enables sensor to detect unclamping completion. The valve opens to exhaust sensor air even when the workpiece blocks the sensor nozzle.

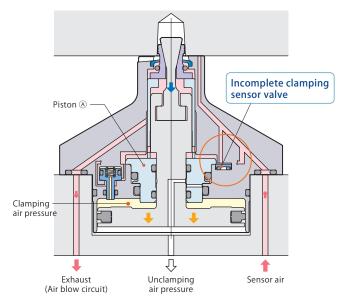

Clamp condition	Unclamping sensor valve	Air sensor signal	Air pressure switch	
Unclamping completion			Unclamping ON air pressure	
Clamping completion	Close	Air sensor ON (Sensor air does not flow.)	Clamping air pressure	

Clamping


1

Sensor air

air pressure

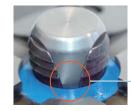


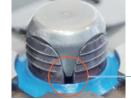
Incomplete Unclamping Clamp condition Sensor nozzle Air sensor signal Air pressure switch clamping sensor valve sensor valve Unclamping Unclamping ON air pressure Air sensor OFF Close Close Open completion (Sensor air flows.) Clamping Air sensor ON Clamping air pressure Close Close Close ON completion (Sensor air does not flow.)

Faulty seating of workpiece

Incomplete clamping

Clamp conditi	on	Sensor nozzle	Incomplete clamping sensor valve	Unclamping sensor valve	Air sensor signal	Air pressure switch
Faulty seatin workpiec	-	Open	Close	Close	Air sensor OFF (Sensor air flows.)	Clamping air pressure ON
Incomplet clamping		Close	Open	Close	Air sensor OFF (Sensor air flows.)	Clamping air pressure ON


Non-constant air blow model considerably reduces air consumption


PAT. JP5674191 US8800982 EP2543468

The newly developed non-constant air blow model has no open space between a scraper, a gripper and a rod thereby no air blow during machining is required to prevent chips intrusion.

The air blow model (See picture on the right), which requires constant air blow during machining, used to consume constantly 50 L/ min (0.3MPa) of air for 12mm of grip inner diameter, however, the new model requires air blow only when the clamp is in clamp and unclamp action, and when workpiece replacement.

This enables significant reduction of air consumption, which helps promote energy conservation.

2 Grippers, 3 Grippers Non-constant air blow model

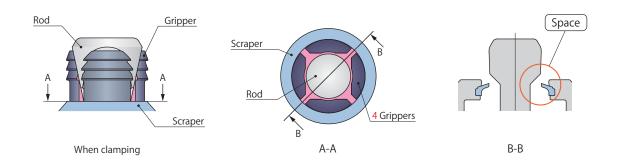
Open space where metal chips can intrude is removed during clamping.

4 Grippers (Old model) Air blow model

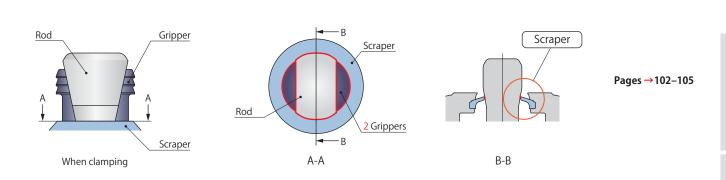
Open space where metal chips can intrude is created during clamping.

Non-constant air blow model

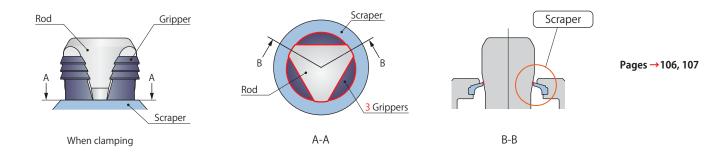
GGE



Number of grippers	Grip inner diam	eter	Clamping force	Model
2 Grippers	ø7.07.37.6 ø8.59	7.9 8.2 10	0.81 kN (Air pressure 0.5MPa)	CGE-N22E Grip inner diameter

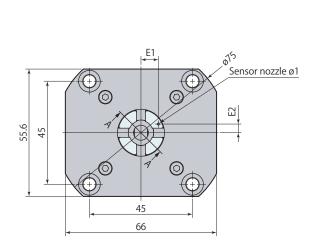

Number of grippers	Grip inner diameter	Clamping force	Model
3 Grippers	ø11 12 13	0.81 kN (Air pressure 0.5MPa)	CGE-N22E Grip inner diameter

Space where metal chips can intrude is created (Old model)



Because of space between scraper, gripper and the rod, air blow must always be performed to prevent intrusion of chips.

Secure chip protection



Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.

Dimensions

øS _0.

ø52.5

ø53 f7 -0.030

4-ø9.5

Clamp removal thread

4-M6×1 thread through

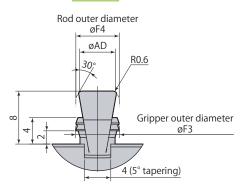
O-ring AS568-032

4-ø5.5

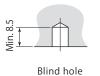
12

40±0.005

9.5

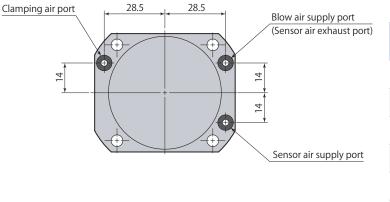

3-O-ring P4

48


67.5

Seating surface outer diameter øU Seating surface inner diameter øT

*Details

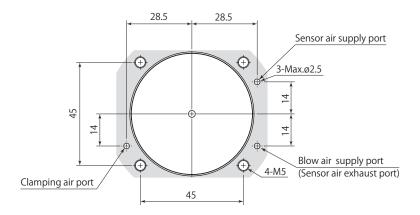

Grip inner diameter usage requirements

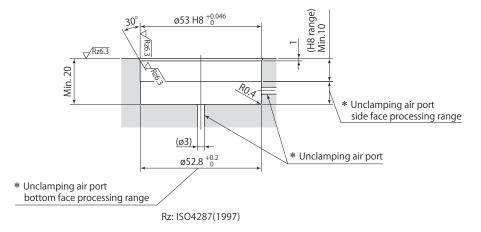
Through hole

mm

- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

GGE

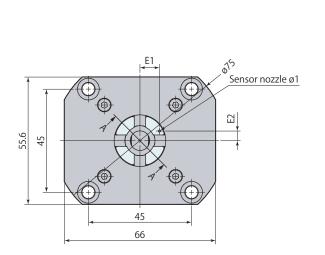

TH

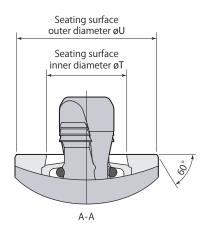

Model		CC	GE-N22E		
Model	070	073	076	079	082
E1	7.6	7.7	7.8	7.9	8.1
E2	3.8	3.8	3.8	3.9	4
øF3	6.5	6.8	7.1	7.4	7.7
øF4	6.55	6.85	7.15	7.45	7.75
øS	20.5	20.6	20.9	21.2	21.5
øT	10.6	10.9	11.2	11.5	11.8
øU	20	20.1	20.4	20.7	21
øAD	5.4	5.7	6	6.3	6.6

102

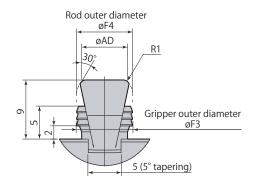
CGE-N22E070, 073, 076, 079, 082 are made to order.

Mounting details




*: Unclamping air port must be made on either side or bottom face.

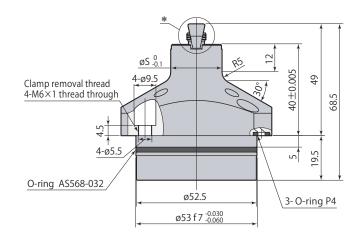
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

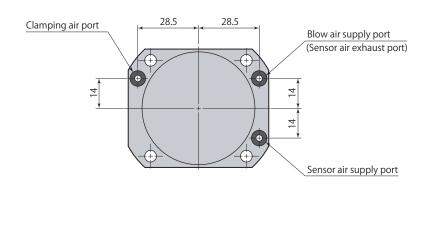

• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions

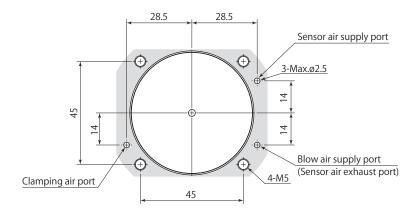
*Details

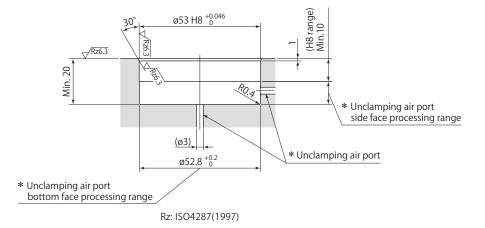
Grip inner diameter usage requirements





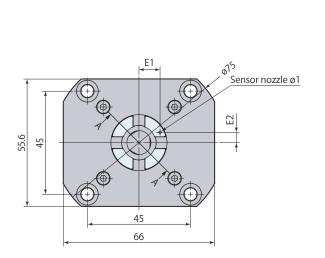
Through hole

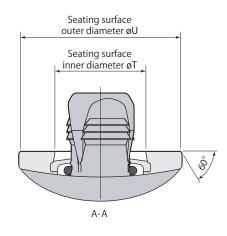

mm CGE-N22E Model 085 09 10 E1 8.5 8.5 9 E2 4.2 4.2 4.4 8 9.5 øF3 8.5 8.05 9.55 øF4 8.55 øS 22.5 22.5 23.5 12.1 12.6 øΤ 13.6 22 23 øU 22 øAD 6.3 6.8 7.8 CGE-N22E085, 09, 10 are made to order.



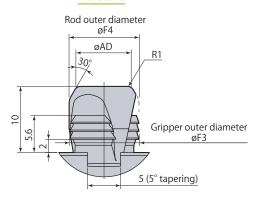
- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

Mounting details

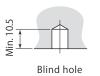



*: Unclamping air port must be made on either side or bottom face.

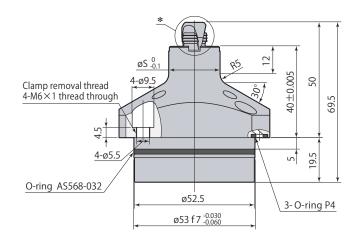
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

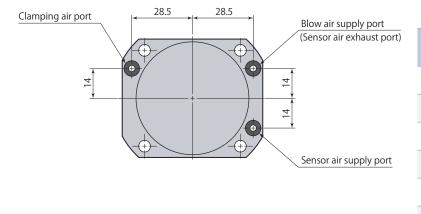

• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions

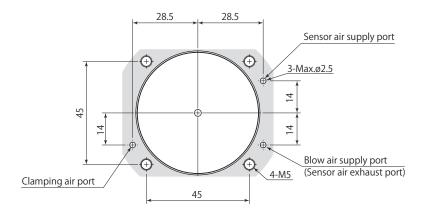


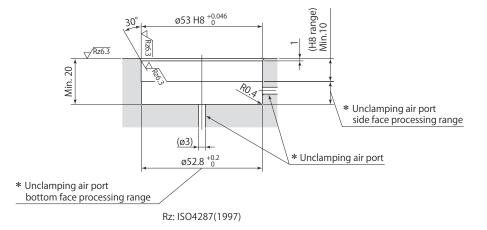
*Details


Grip inner diameter usage requirements


Through hole

		CGE-N22E	mm			
Model						
model	11	12	13			
E1	9.4	9.9	10.3			
E2	4.6	4.8	5.1			
øF3	10.5	11.5	12.5			
øF4	10.55	11.55	12.55			
øS	24.5	25.5	26.5			
øT	14.6	15.6	16.6			
øU	24	25	26			
øAD	8.2	9.2	10.2			


Air expansion clamp Non-constant air blow model

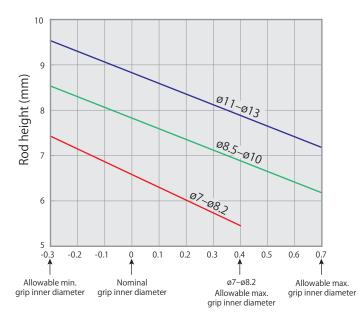


- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

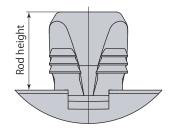
CGE-N22E11, 12, 13 are made to order.

Mounting details

*: Unclamping air port must be made on either side or bottom face.


Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

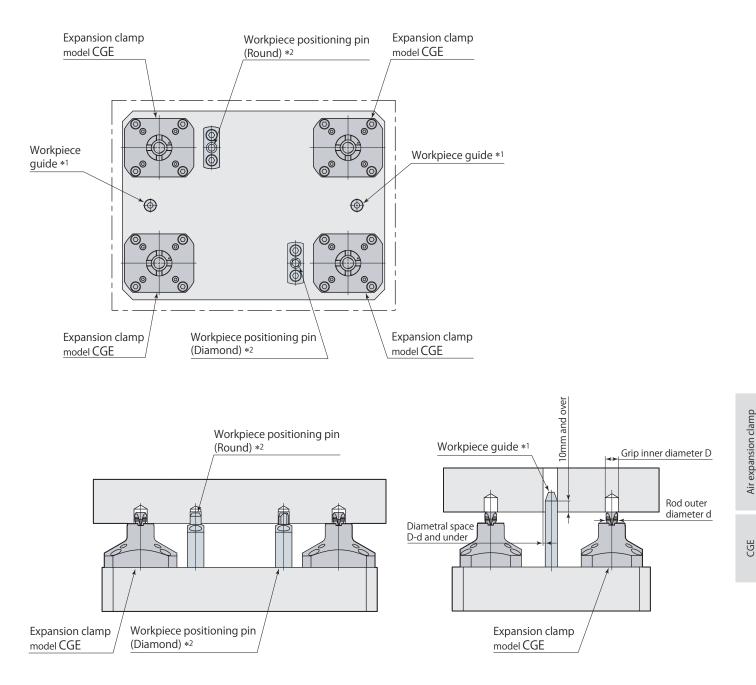
• The 30° taper machining must be provided to avoid the damage of the O-ring.


Number of grippers	Gripper set model	Clamp model	Set description				
	CGE-N22EJ070	CGE-N22E070					
	CGE-N22EJ073	CGE-N22E073					
	CGE-N22EJ076	CGE-N22E076	$\frac{\text{Scraper} \times 1}{(\text{Refer to table left})}$				
2 Cripport	CGE-N22EJ079	CGE-N22E079					
2 Grippers	CGE-N22EJ082	CGE-N22E082					
	CGE-N22EJ085	CGE-N22E085					
	CGE-N22EJ09	CGE-N22E09					
	CGE-N22EJ10	CGE-N22E10					
	CGE-N22EJ11	CGE-N22E11	It is recommended that grippers, scraper and O-ring be replaced after about 200,000 oper-				
3 Grippers	CGE-N22EJ12	CGE-N22E12	ations. Replace grippers in sets and not just an individual gripper. (Refer to the table on the				
	CGE-N22EJ13	CGE-N22E13	left for the gripper set model.)				

Gripper set replacement

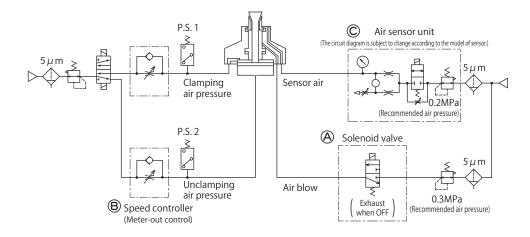
Grip inner diameter & rod height when clamping

Difference between actual grip inner diameter and nominal grip diameter (mm)

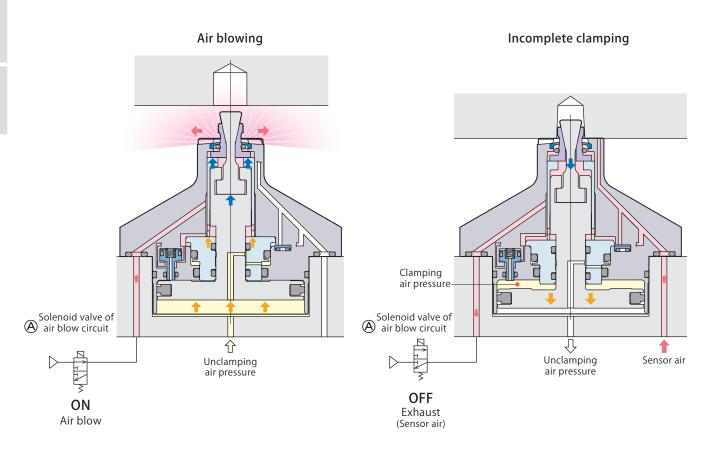


ø7 – ø8.2:6.58-2.84× Actual grip inner diameter and nominal grip diameter difference
$\emptyset 8.5 - \emptyset 10$: 7.82-2.35 × Actual grip inner diameter and nominal grip diameter difference
\emptyset 011 - \emptyset 13 : 8.82-2.35 × Actual grip inner diameter and nominal grip diameter difference

Example: When CGE-N22E10 (Nominal grip diameter : \emptyset 10) is clamping \emptyset 9.8 hole Rod height = 7.82 - 2.35 × (-0.2) = 8.29mm

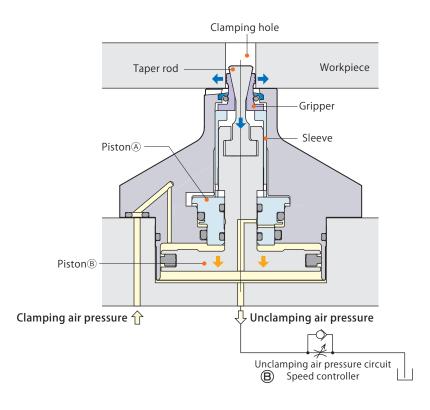

CGE

System configuration example



- *1: When using automatic or robotic conveyers, prevent damage to clamp caused from impact by setting workpiece guides. Using the above guide as reference, accurately position the holes when using workpiece guides.
- *2: The expansion clamp does not have a workpiece positioning function. Install workpiece positioning pins (or similar).

Pneumatic circuit diagram



- Air blow will not be necessary during cutting process. Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping to remove metal chips and debris.
- The solenoid valve (a) must be closed when checking the operation of the clamp with the air sensor. Also 3 port type of solenoid valve must be used in the circuit. If 2 port type of the valve is used, sensing air cannot be exhausted and misclamp detection function is disabled.

CGE

- Operation speed must be adjusted by a meter-out type speed controller (B) being provided in the unclamping circuit. By the adjustment, air flow in unclamping circuit is squeezed and back pressure is generated. The back pressure acts on the piston (A) of the clamp and makes the gripper expand first then the taper rod strokes down to clamp. If meter-in type speed controller is installed in the circuit, it dumps the air rapidly and makes the gripper move very quick which causes incomplete clamping.
- Adjust air flow when clamping to have the taper rod full stroke in 0.3 sec or over.
 Excessive air flow to the clamp gives impact load and may cause breakage of the parts.

Air sensor unit C recommended condition of use

Supplier and model	ISA3-F/G series manufactured by SMC
	GPS2-05, GPS3-E series manufactured by CKD
Air supply pressure	0.2 MPa
Inner diameter of piping	ø4 mm (ISA3-F:ø2.5 mm)
Overall piping length	5 m or less

- Use a solenoid valve with needle for air sensor unit © and control it supplying air all the time in order to eliminate intrusion of chips or coolant.
- There is a case that air sensing cannot be made successfully as designed when it is used out of the usage shown on the left. Contact Technical service center for more details.

BD

Operation cycle

The clamp should be controlled with the cycle in the diagram shown below to detect the operation status exactly.

	State		Workpiece loading	(Jamping (Machining))					Unclamping	Air blow OFF	Unclamping completion*2	Air blow ON	Workpiece unloading	
	Workpiece	Clamp							$\overline{}$					
	clamp	Unclamp	/											
	Airblow	ON						\neg						
*4	Air blow	OFF												
	Company	ON												
	Sensor air	OFF												
	Clamping a P.S. 1	ir pressure	OFF			0	N				OFF			
*5	Unclamping P.S. 2	g air pressure	ON	ON OFF			FF				ON			
	Air sensor					ON or	OFF*3				OFF			

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=ON

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON Air sensor=OFF

*****3 : ON : Complete clamping OFF : Incomplete clamping

*4 : Solenoid valve control *5 : Air pressure switch, Air sensor signal

CGE

Caution in use

- Be sure to make inner diameter of air blow circuit 4 mm and over except for clamp mounting surface.
- Set the workpiece in such a way that the clamping hole of workpiece is perpendicular to seating surface. Clamping in tilted condition results in uneven contact of gripper with hole, which leads to concentration of load that may cause damage.
- Verify that there are no metal chips or debris on seating surface of clamping hole and clamp body before setting workpiece. Allowing intrusion of metal chips results in insecure clamping, which can lead to low grade of machining accuracy.
- Flaring (Biting) of gripper into workpiece varies depending on workpiece material or thermal processing conditions. With regards to conditions of workpiece and clamping hole, refer to page →91. Secure clamping is not possible when workpiece or clamping hole that does not satisfy these conditions is used.
- If clamping hole serves as taper hole (cast draft hole with gradient), then perform test clamping using applicable workpiece beforehand to verify that there are no problems with operations.
- Deformation may occur if the thickness of clamping hole section of workpiece is extremely thin. Use applicable workpiece to perform test clamping beforehand to verify that there are no deformations in thin portion.
- Supply the dry and filtered air. Particulate size 5 µ m or less is recommended.
- Measure seating surface flatness with air pressure applied on clamping side, or by applying air pressure on neither clamping nor unclamping side.
- Set detection range of air sensor to 0.05 mm and under from seating surface. Insert a feeler gauge between workpiece and seating surface to create detection distance in order to perform setting accurately. Refer to instruction manual of air sensor for details on setting methods.

Perform unclamping completion detection, clamping completion detection and incomplete clamping detection with combination actions of pressure switch and sensor shown in table below. (Refer to the pneumatic circuit diagram on page →110 for details.)

Pressure	Pressure		
switch 1 (P.S. 1)	switch 2 (P.S. 2)	Air sensor	
OFF	ON	OFF	
ON	OFF	ON	
ON	OFF	OFF	
	switch 1 (P.S. 1) OFF ON	switch 1 (P.S. 1)switch 2 (P.S. 2)OFFONONOFF	

air Expansion clamp

Double acting 1MPa

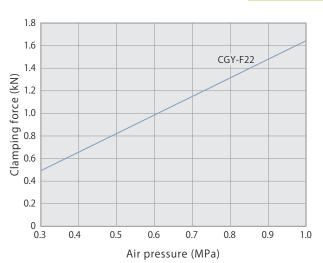
model CGY

Air expansion clamp Long neck

Specifications

		Grip inner diameter : Number of grippers	
	– : Air blow model	055 058 061 064 067 070A : 2 Grippers	
CGY — F22		070 073 076 079 082 : 2 Grippers	
	E : Non-constant air blow model	085 09 10 : 2 Grippers	
	an blow model	11 12 13 : 3 Grippers	
		indicates made	to order.

		ma	cutes	maat	0	oraci.
CG	Y-F22	E.				

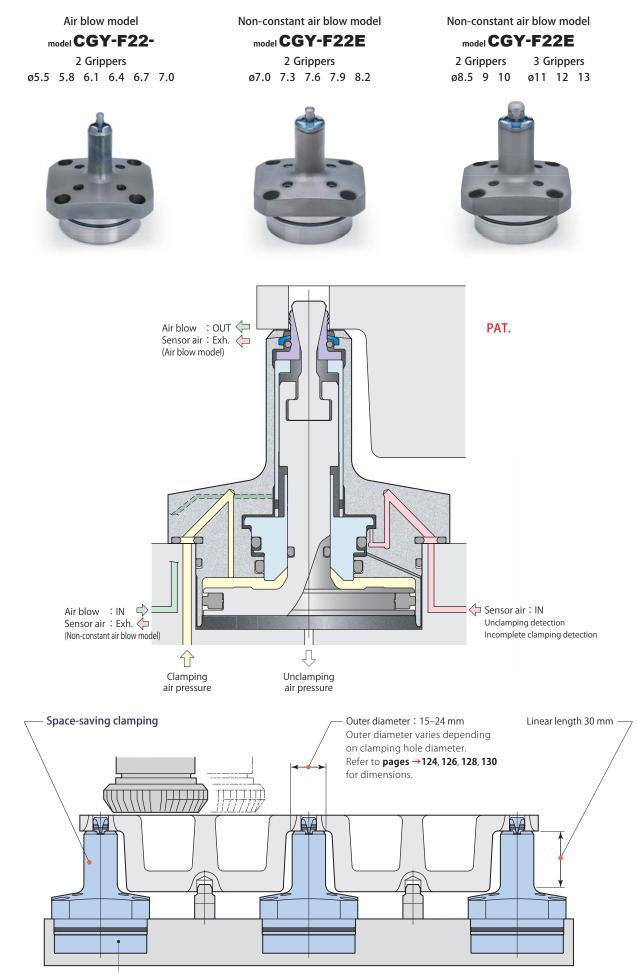

Size			CGY-F22-						CGY-F22E										
model	Grip inner dia	ameter	055	055 058 061 064 067 070A				070	073	076	079	082	085	09	10	11	12	13	
Number of grip	pers			2 Grippers 3 Grippers								ers							
Clamping force (air pressure 0.5	MPa)	kN									0.81								
Radial expansio (air pressure 0.5	n force	kN			2	.52					2.81					2.5	52		
Taper rod stroke	e	mm			4	.0								4.8					
Clamp stroke		mm									1.2								
Cylinder	Clamp	cm ³			7	.2								8.7					
cápacity	Unclamp	cm³			8	.1			9.7										
Allowable eccer	ntricity*1	mm			±0	.3							1	-0.4					
Recommended	air blow	MPa									0.3								
Recommended pressure	sensor air	MPa									0.2								
Mass		kg		0.61 0.65 0.67 0.68															
Recommended torque of moun	tightening ting screws*2	N·m									7								
Workpiece mate	erial	Aluminum, steel and others (HRC25 or below). Cast iron are not usable.																	
Allowable min. diameter	grip inner	mm	5.2	5.2 5.5 5.8 6.1 6.4			6.7	6.7	7.0	7.3	7.6	7.9	8.2	8.7	9.7	10.7	11.7	12.7	
Allowable max. diameter	grip inner	mm	5.8 6.1 6.4 6.7 7.0 7.3					7.4	7.7	8.0	8.3	8.6	9.2	9.7	10.7	11.7	12.7	13.7	
Grip inner diam (Draft angle)	eter tapering	angle								3° o	r belo	W							
Grip inner diam	eter circularity	/								0.1 c	or belo	W							

Pressure range: 0.3–1 MPa (CGY-F22-055, 058, 061, 064, 067, 070A: 0.3–0.8 MPa)

● Proof pressure: 1.5 MPa (CGY-F22-055, 058, 061, 064, 067, 070A: 1.2 MPa) ● Operating temperature: 0–70 °C ● Fluid used: air

Please inquire if above terms are not applied.

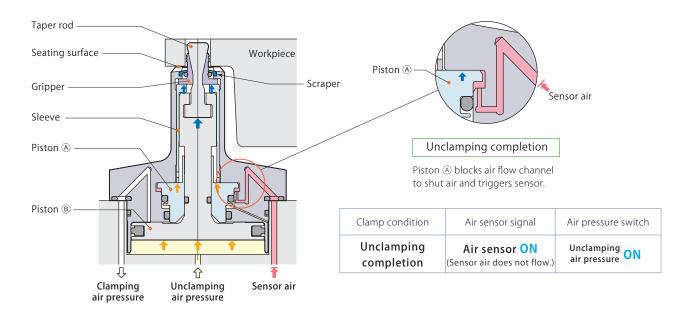
*1:By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function. *2:ISO R898 class 12.9


Clamping force & air pressure

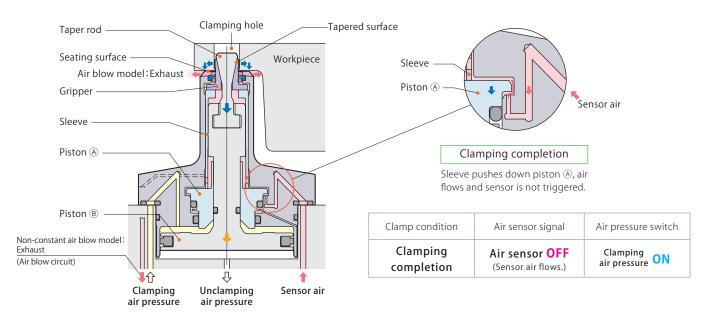
Air pressure	MPa	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Clamping force F=1.617×P	kN	0.49	0.65	0.81	0.97	1.13	1.29	1.46	1.62

P:Air pressure (MPa)

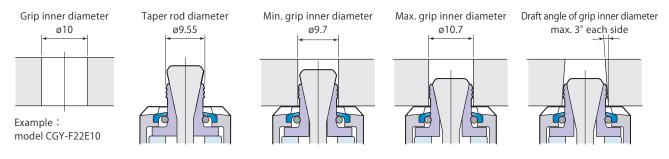
 CGY-F22-055, 058, 061, 064, 067, 070A applicable air pressure should be 0.3 to 0.8 MPa. CGY-F22


Air expansion clamp Long neck

Air expansion clamp model CGY

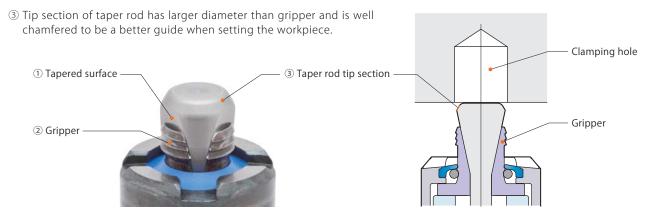

Workpiece setting (Unclamping completion)

- ① Pistons ④ & B, as well as taper rod and gripper are raised by unclamping air pressure.
- ② Workpiece unclamping is completed by the sensor air, clamping and unclamping air pressure.
- ③ Set the workpiece onto the seating surface.

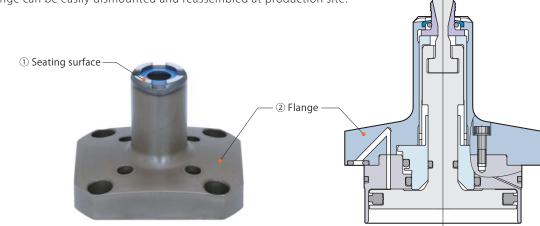

Workpiece holding (Clamping completion)

- ① Piston [®] and taper rod are lowered by clamping air pressure after releasing unclamping air pressure.
- ② The gripper expands horizontally along the tapered surface to grip inner face of clamping hole.
- ③ The gripper securely grips the inner face of clamping hole and pulls the workpiece down firmly onto the seating surface.
- ④ Workpiece holding is completed by the sensor air, clamping and unclamping air pressure.

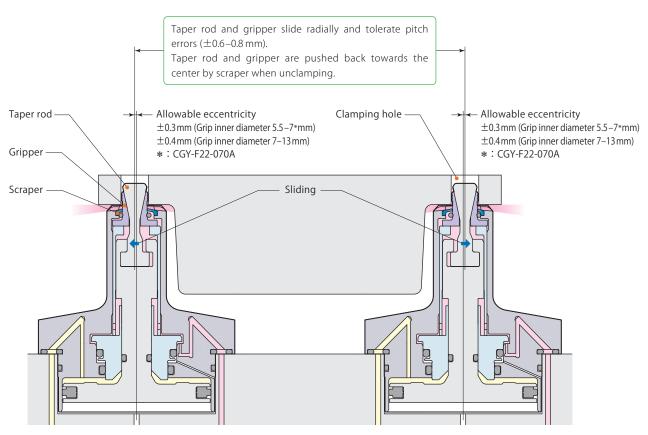
Large gripper expansion stroke


The gripper expands horizontally 1.0mm(*), which enables the accommodation of dimensional variations in diecast bore diameters and ensures workpiece is held securely.

*: 0.6mm stroke for CGY-F22-055, 058, 061, 064, 067, 070A. 0.7mm stroke for CGY-F22E070, 073, 076, 079, 082.

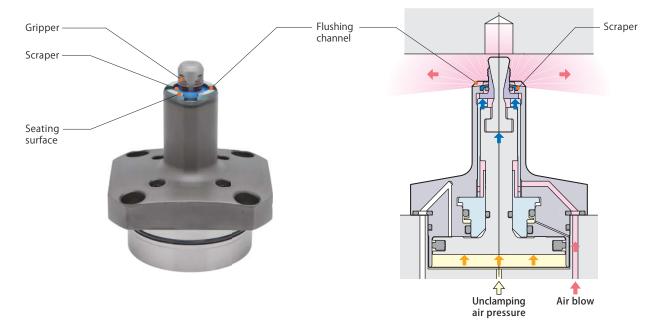

Taper rod and gripper with superior durability

- ① The holding force of expansion clamp is transmitted from tapered surface to gripper, making it possible for the gripper to hold onto inner face of clamping hole and hold the workpiece on the seating surface for secure workpiece clamping.
- ② Special steel with superior abrasion resistance is used for gripper to improve durability.

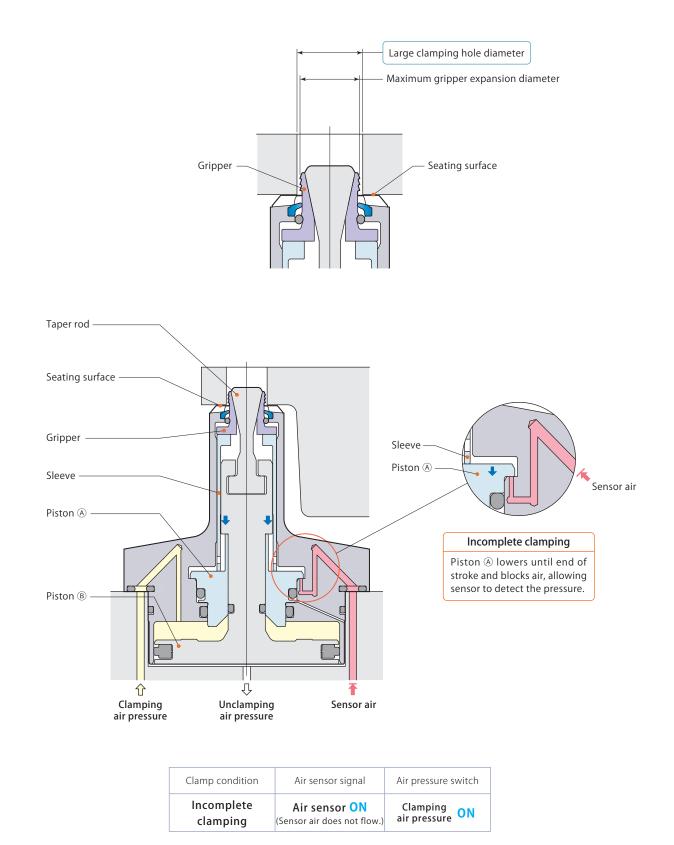


Seating surface can be reground (Max. 0.1 mm)

- ① When seating surface is damaged, the flange section can be dismounted and reground.
- ② Flange can be easily dismounted and reassembled at production site.

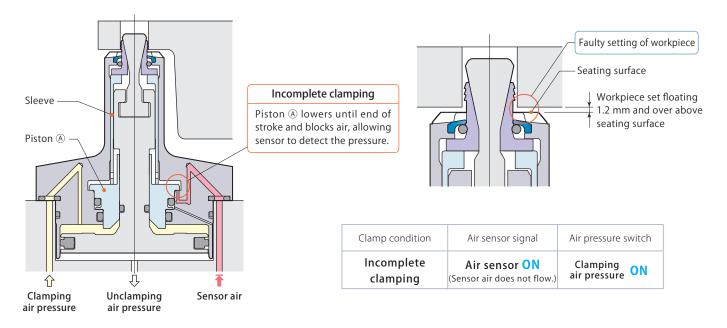

Clamping hole pitch errors can be tolerated

By the eccentric mechanism, the expansion clamp does not have a workpiece positioning function.

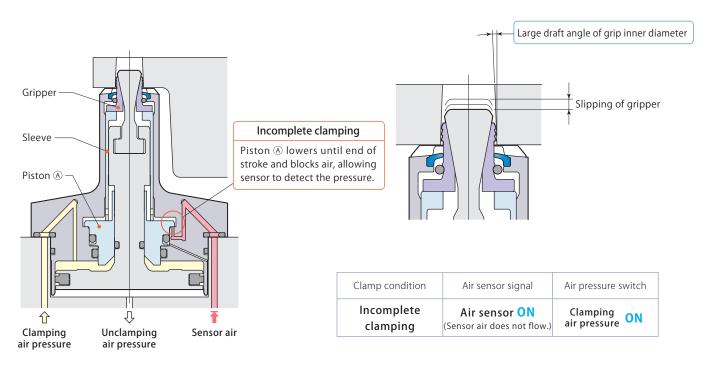

Incorporating strong air blowing circuit

Air blow from a gap between the gripper and scraper clears off metal chips and coolant that stay on the seating surface. Flushing channel is also provided on the seating surface to remove the metal chips and coolants smoothly during workpiece setting.

Detects clamping hole diameter that is too large


When the inner diameter of clamping hole exceeds tolerance value, then gripper will fail to gain grip on workpiece even when extended to maximum reach. Piston (a) lowers until end of stroke as it is pushed down by piston (b) and blocks sensor air, which triggers air sensor and detects incomplete clamping.

CGY Long neck


Detects deformation of workpiece and floating of workpiece

When workpiece has significant deformation or when it is set poorly with gap of 1.2 mm above seating surface, then even when the gripper lowers until end of stroke, the workpiece is not held on seating surface. At this time, piston (A) lowers until end of stroke as it is pushed down by sleeve and blocks sensor air, which triggers air sensor and detects incomplete clamping.

Detects incomplete gripping

When the inner diameter of clamping hole is slightly larger than allowable value, or when the draft angle of grip inner diameter is large and results in incomplete gripping by the gripper, piston (A) lowers until end of stroke as sleeve pushes it down and sensor air is blocked, which triggers air sensor and detects incomplete clamping.

CGY-F22

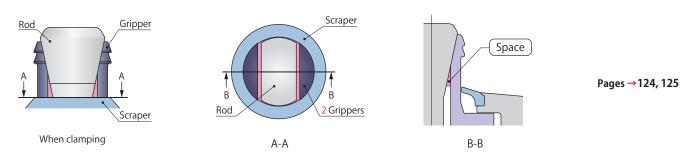
With the development of the non-constant air blow expansion clamp, air consumption will be significantly decreased. The traditional model ordinarily requires 50L/min (0.3MPa) flow rate (when grip inner diameter is ø12). The new model can reduce

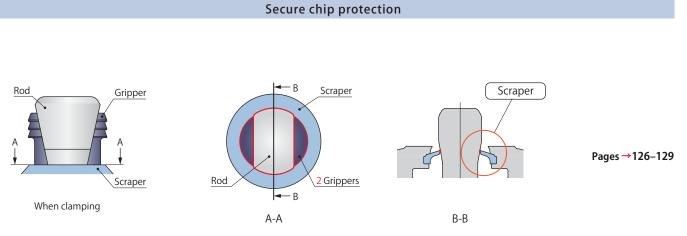
Air blow model

Number of grippers	Grip inner diameter	Clamping force	Model
2 Grippers	ø 5.5 5.8 6.1 6.4 6.7 7.0	0.81 kN (Air pressure 0.5MPa)	CGY-F22-Grip inner diameter

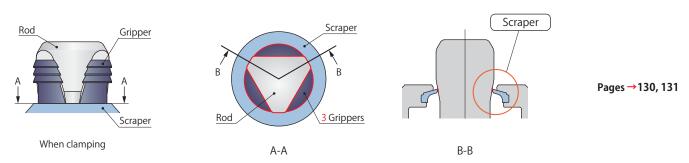
Non-constant air blow model

Number of grippers	Grip inner diameter	Clamping force	Model	
	ø7.0 7.3 7.6	0.81 kN	CGY-F22E Grip inner diameter	
2 Grippers	7.9 8.2	(Air pressure 0.5MPa)		
2 0	ø 8.5 9 10	0.81 kN (Air pressure 0.5MPa)	CGY-F22E Grip inner diameter	

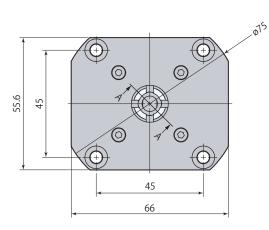

Air expansion clamp

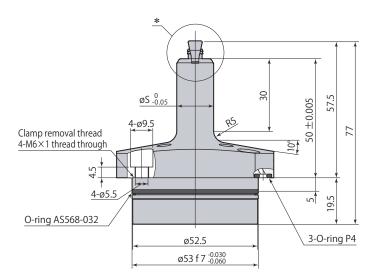

Number of grippers	Grip inner diameter	Clamping force	Model
3 Grippers	ø11 12 13	0.81 kN (Air pressure 0.5MPa)	CGY-F22E Grip inner diameter

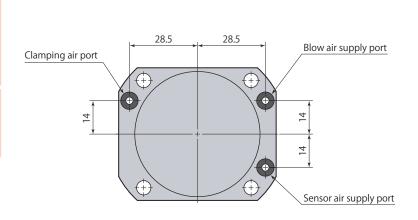
air consumption and help promote energy conservation. However air blow at time of workpiece replacement is a must.

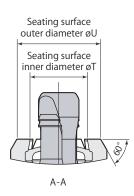

Space where metal chips can intrude is created

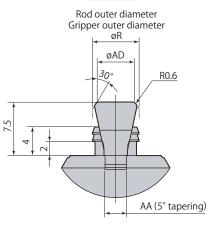
Because of space between scraper, gripper and the rod, air blow must always be performed to prevent intrusion of chips.



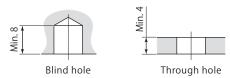

Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.


Because there is no space between scraper, gripper and the rod, it is not necessary to perform air blow during cutting process.


Dimensions

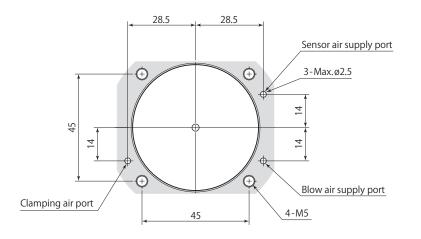


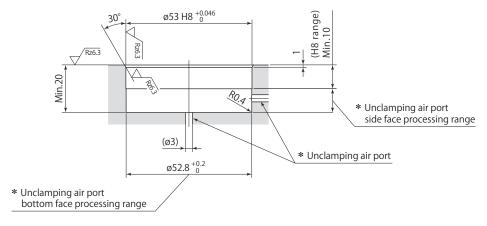
CGY Air expansion clamp Long neck Air blow model



*Details

Grip inner diameter usage requirements

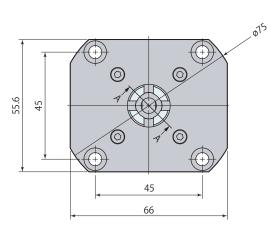

mm

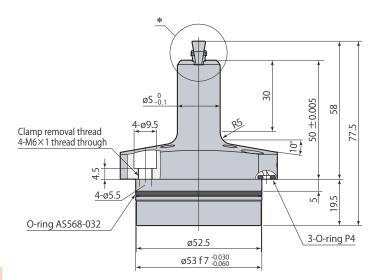

	mm											
Model	CGY-F22-											
mouch	055	058	061	064	067	070A						
øR	5	5.3	5.6	5.9	6.2	6.5						
øS	15	15	15	15	15	15.5						
øT	7.8	8.1	8.4	8.7	9	9.3						
U	11	11.6	12.2	12.8	13	13.5						
AA	2.5	2.5	3	3	3	3						
øAD	3.8	4.1	4.4	4.7	5.0	5.3						

- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

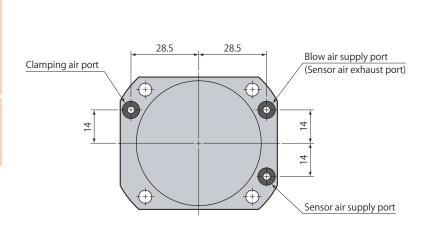
• CGY-F22-055,058,061,064,067,070A are made to order.

Mounting details

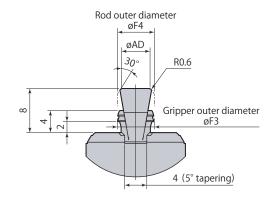

Rz: ISO4287(1997)


*: Unclamping air port must be made on either side or bottom face.

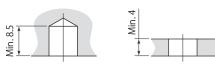
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.


• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions



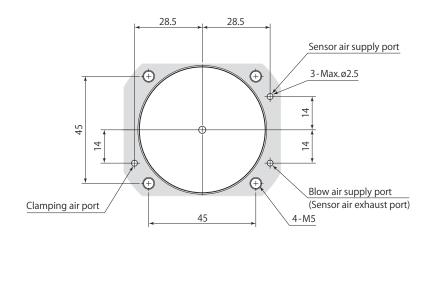
CGY Air expansion clamp Long neck Non-constant air blow model

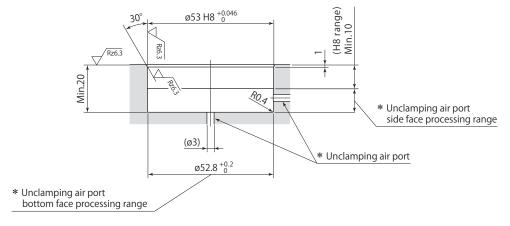


*Details

Grip inner diameter usage requirements

Blind hole

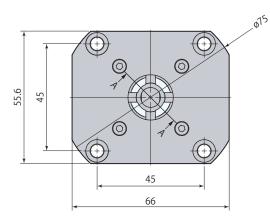

Through hole

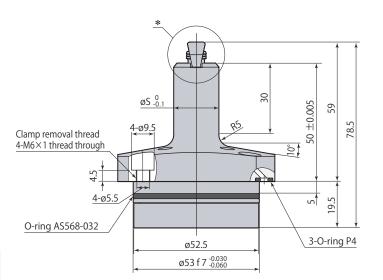

Model		CGY-F22E										
Model	070	073	076	079	082							
øF3	6.5	6.8	7.1	7.4	7.7							
øF4	6.55	6.85	7.15	7.45	7.75							
øS	18	18.3	18.6	18.8	18.8							
øT	10.6	10.9	11.2	11.5	11.8							
øU	16	16.3	16.6	16.9	17.2							
øAD	5.4	5.7	6	6.3	6.6							

- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

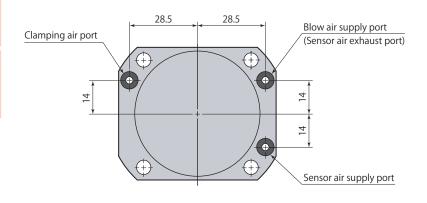
• CGY-F22E070,073,076,079,082 are made to order.

Mounting details

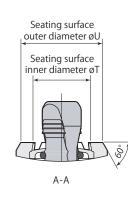

Rz: ISO4287(1997)

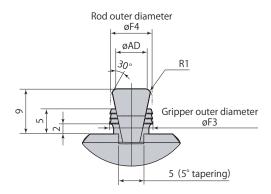

*: Unclamping air port must be made on either side or bottom face.

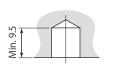
Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

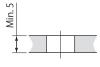

• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions





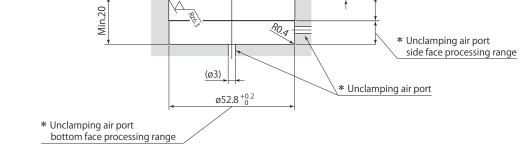

- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.



*Details

Grip inner diameter usage requirements


Blind hole


Through hole

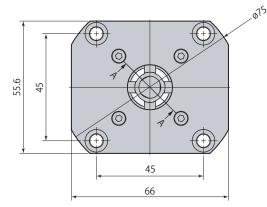
			mm						
Model	CGY-F22E								
Model	085	09	10						
øF3	8	8.5	9.5						
øF4	8.05	8.55	9.55						
øS	19.5	20	21						
øT	12.1	12.6	13.6						
øU	17.5	18	19						
øAD	6.3	6.8	7.8						

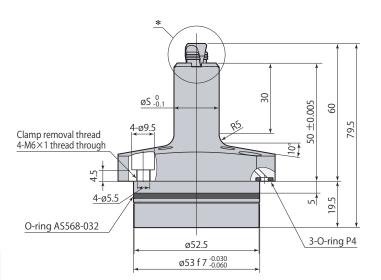
CGY-F22E085 is made to order.

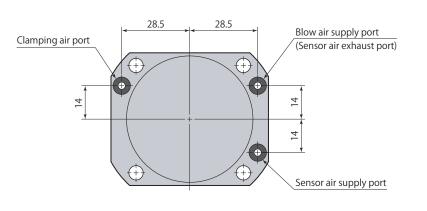
Mounting details

Rz: ISO4287(1997)

Rz6.3

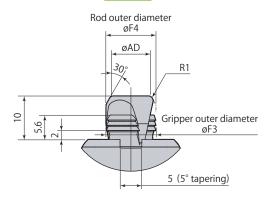

Rz6.3


*: Unclamping air port must be made on either side or bottom face.


Apply an appropriate amount of grease to the chamfer and the bore when mounting. Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

• The 30° taper machining must be provided to avoid the damage of the O-ring.

Dimensions



Seating surface outer diameter øU Seating surface inner diameter øT

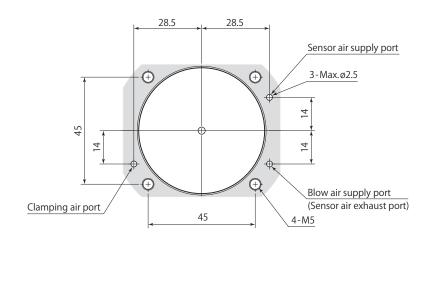
Double

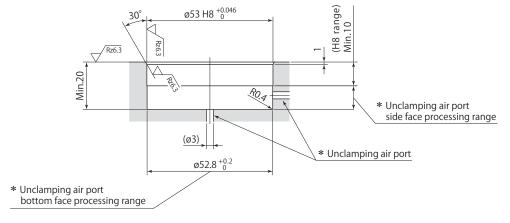
acting

*Details

Grip inner diameter usage requirements

Blind hole


Through hole


			mm						
Model	CGY-F22E								
Model	11	12	13						
øF3	10.5	11.5	12.5						
øF4	10.55	11.55	12.55						
øS	22	23	24						
øT	14.6	15.6	16.6						
øU	20	21	22						
øAD	8.2	9.2	10.2						

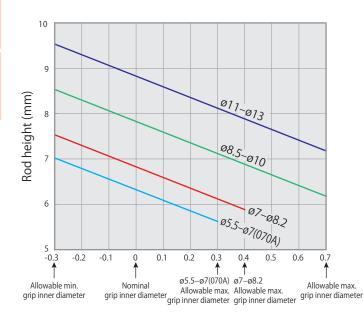
- Mounting screws are not included.
- Material used for O-ring is fluorocarbon (Hardness Hs90).
- Seating surface hardness is HRC55.
- The above diagram indicates unclamped condition.

CGY-F22E11, 12, 13 are made to order.

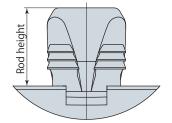
Mounting details

Rz: ISO4287(1997)

*: Unclamping air port must be made on either side or bottom face.

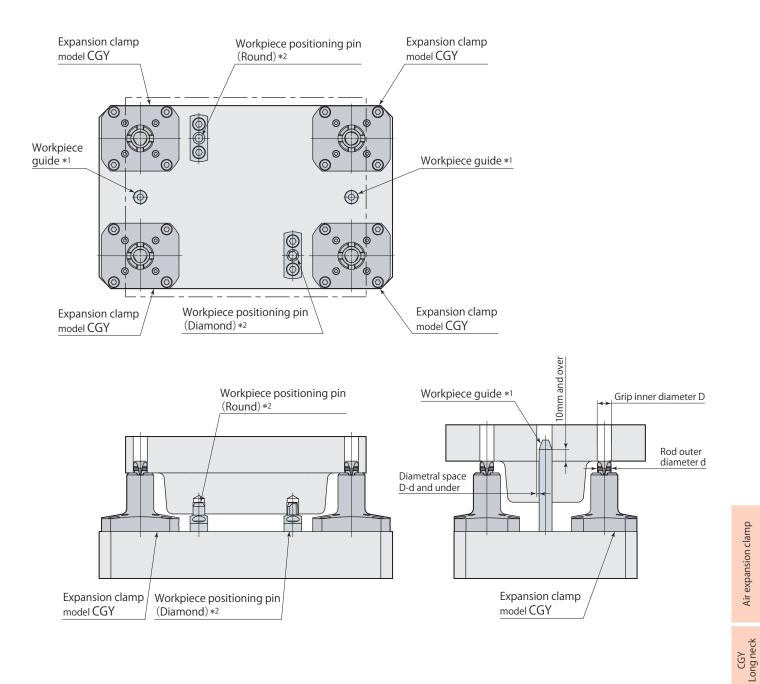

Apply an appropriate amount of grease to the chamfer and the bore when mounting.
 Excessive grease may be a blockage in the air passage, causing malfunction of the sensor.

• The 30° taper machining must be provided to avoid the damage of the O-ring.


Number of grippers	Gripper set model	Clamp model	Set description
	CGY-F22-J055	CGY-F22-055	
	CGY-F22-J058	CGY-F22-058	
	CGY-F22-J061	CGY-F22-061	
	CGY-F22-J064	CGY-F22-064	Scraper \times 1 Gripper (Refer to table left)
	CGY-F22-J067	CGY-F22-067	
	CGY-F22-J070A	CGY-F22-070A	O-ring × 1
2 Gripporg	CGY-F22EJ070	CGY-F22E070	*CGY-F22-J055–J070A are not included.
2 Grippers	CGY-F22EJ073	CGY-F22E073	
	CGY-F22EJ076	CGY-F22E076	
	CGY-F22EJ079	CGY-F22E079	
	CGY-F22EJ082	CGY-F22E082	
	CGY-F22EJ085	CGY-F22E085	It is recommended that grippers, scraper and
	CGY-F22EJ09	CGY-F22E09	O-ring be replaced after about 200,000 oper-
	CGY-F22EJ10	CGY-F22E10	ations. Replace grippers in sets and not just an
3 Grippers	CGY-F22EJ11	CGY-F22E11	individual gripper. (Refer to the table on the left for the gripper set model.)
	CGY-F22EJ12	CGY-F22E12	
	CGY-F22EJ13	CGY-F22E13	

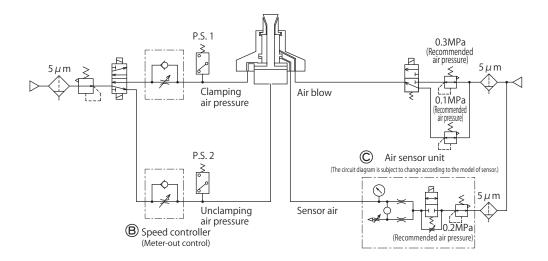
Gripper set replacement

Difference between actual grip inner diameter and nominal grip diameter (mm)

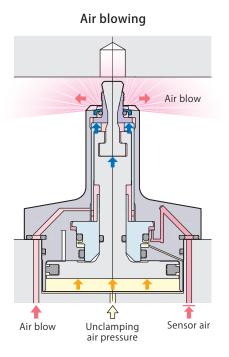


Rod height calculation formula							
ø $5.5-$ ø $7^*:6.32-2.35 imes$ Actual grip inner diameter and nominal grip diameter difference							
ϕ 7 – ϕ 8.2:6.58-2.84 × Actual grip inner diameter and nominal grip diameter difference							
$\emptyset 8.5 - \emptyset 10:7.82 - 2.35 imes { m Actual grip inner diameter and nominal grip diameter difference}$							
\emptyset 11 – \emptyset 13 : 8.82-2.35 × Actual grip inner diameter and nominal grip diameter difference							

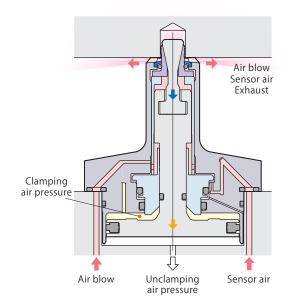
*:CGY-F22-070A

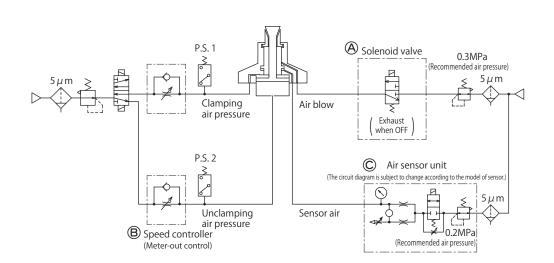

Example:When CGY-F22E10 (Nominal grip diameter : ø10) is clamping ø9.8 hole Rod height = 7.82 - 2.35×(-0.2) = 8.29mm

System configuration example



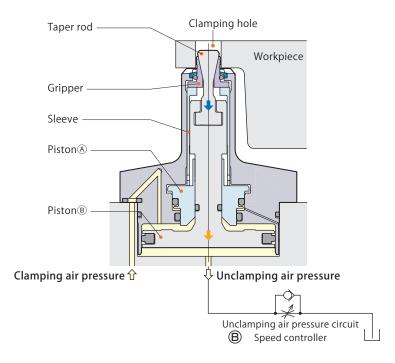
- *1: When using automatic or robotic conveyers, prevent damage to clamp caused from impact by setting workpiece guides. Using the above guide as reference, accurately position the holes when using workpiece guides.
- *2: The expansion clamp does not have a workpiece positioning function. Install workpiece positioning pins (or similar).


Air blow model pneumatic circuit diagram



- Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping. During cutting, if chips adhere to the gripper such as when going through the clamping hole, continue air blowing during processing as well.
- Air blow pressure must be set to 0.1MPa when checking the operation of the clamp with the air sensor.

Clamping



Non-constant air blow model pneumatic circuit diagram

- Air blow will not be necessary during cutting process. Be sure to air blow upon loading and unloading workpiece and when clamping and unclamping to remove metal chips and debris.
- The solenoid valve (a) must be closed when checking the operation of the clamp with the air sensor. Also 3 port type of solenoid valve must be used in the circuit. If 2 port type of the valve is used, sensing air cannot be exhausted and clamp detection function is disabled.

- Operation speed must be adjusted by a meter-out type speed controller (B) being provided in the unclamping circuit. By the adjustment, air flow in unclamping circuit is squeezed and back pressure is generated. The back pressure acts on the piston (A) of the clamp and makes the gripper expand first then the taper rod strokes down to clamp. If meter-in type speed controller is installed in the circuit, it dumps the air rapidly and makes the gripper move very quick which causes incomplete clamping.
- Adjust air flow when clamping to have the taper rod full stroke in 0.3 sec or over.
 Excessive air flow to the clamp gives impact load and may cause breakage of the parts.

Air sensor unit [©] recommended condition of use

Supplier and model	ISA3-F/G series manufactured by SMC
	GPS2-05, GPS3-E series manufactured by CKD
Air supply pressure	0.2 MPa
Inner diameter of piping	ø4 mm (ISA3-F:ø2.5 mm)
Overall piping length	5 m or less

- Use a solenoid valve with needle for air sensor unit © and control it supplying air all the time in order to eliminate intrusion of chips or coolant.
- There is a case that air sensing cannot be made successfully as designed when it is used out of the usage shown on the left. Contact Technical service center for more details.

Operation cycle

The clamp should be controlled with the cycle in the diagram shown below to detect the operation status exactly.

Case of air blow model

	State		Workpiece loading	Clamping	Air blow switching	Clamping completion ^{*1}	(Machining)	Air blow switching	Unclamping	Air blow switching	Unclamping completion* ²	Air blow switching	Workpiece unloading
	Workpiece	Clamp											
	clamp	Unclamp											
*4	Air blow	0.3MPa											
*4	AII DIOW	0.1MPa											
	Sensor air	ON											
	Sensor all	OFF											
	Clamping air pressure P.S. 1		OFF			0	Ν				OFF		
*5	Unclamping P.S. 2	g air pressure	ure ON OFF					ON					
	Air sensor					OFF o	r ON* ³				ON		

*1: Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=OFF

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON Air sensor=ON

*3 : OFF : Complete clamping ON : Incomplete clamping

*4 : Solenoid valve control *5 : Air pressure switch, Air sensor signal

Case of non-constant air blow model

	State		Workpiece loading	Clamping	Air blow OFF	Clamping completion*1	(Machining)	Air blow ON	Unclamping	Air blow OFF	Unclamping completion* ²	Air blow ON	Workpiece unloading
	Workpiece	Clamp							$\overline{}$				
	clamp	Unclamp											
*4	Air blow	ON								\neg			
*4	AII DIOW	OFF											
	Companyation	ON											
	Sensor air	OFF											
	Clamping a P.S. 1	ir pressure	OFF			0	N				OFF		
*5	*5 Unclamping air pressure ON		OFF			ON							
	Air sensor					OFF o	r ON*3				ON		

*1 : Clamping completion : P.S. 1=ON P.S. 2=OFF Air sensor=OFF

*2 : Unclamping completion : P.S. 1=OFF P.S. 2=ON Air sensor=ON

*3 : OFF : Complete clamping ON : Incomplete clamping

*4 : Solenoid valve control *5 : Air pressure switch, Air sensor signal

Caution in use

- Be sure to make inner diameter of air blow circuit 4 mm and over except for clamp mounting surface.
- Set the workpiece in such a way that the clamping hole of workpiece is perpendicular to seating surface. Clamping in tilted condition results in uneven contact of gripper with hole, which leads to concentration of load that may cause damage.
- Verify that there are no metal chips or debris on seating surface of clamping hole and clamp body before setting workpiece. Allowing intrusion of metal chips results in insecure clamping, which can lead to low grade of machining accuracy.
- Flaring (Biting) of gripper into workpiece varies depending on workpiece material or thermal processing conditions.
 With regards to conditions of workpiece and clamping hole, refer to page →115. Secure clamping is not possible when workpiece or clamping hole that does not satisfy these conditions is used.
- If clamping hole serves as taper hole (cast draft hole with gradient), then perform test clamping using applicable workpiece beforehand to verify that there are no problems with operations.
- Deformation may occur if the thickness of clamping hole section of workpiece is extremely thin. Use applicable workpiece to perform test clamping beforehand to verify that there are no deformations in thin portion.
- Supply the dry and filtered air. Particulate size 5μ m or less is recommended.
- Measure seating surface flatness with air pressure applied on clamping side, or by applying air pressure on neither clamping nor unclamping side.

● Perform unclamping completion detection, clamping completion detection and incomplete clamping detection with combination actions of pressure switch and sensor shown in table below. (Refer to the pneumatic circuit diagram on page →134, 135 for details.)

Applications	Pressure switch 1 (P.S. 1)	Pressure switch 2 (P.S. 2)	Air sensor
Unclamping completion detection	OFF	ON	ON
Clamping completion detection	ON	OFF	OFF
Incomplete clamping detection	ON	OFF	ON