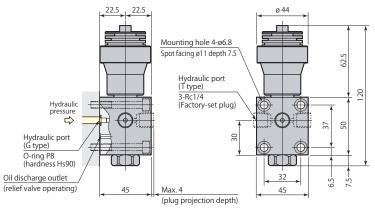
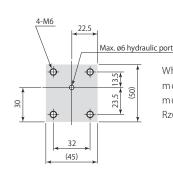


N2 pressure type accumulator.

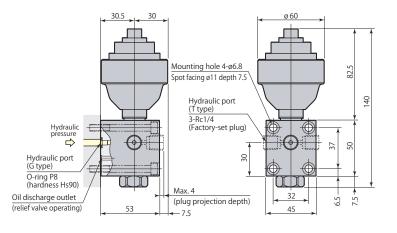
Equipped with a relief valve for preventing breakdown of device in case of problems with circuit pressure (high pressure).


Specifications

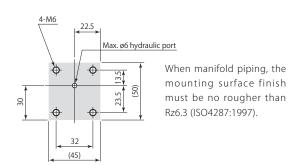
Model Mounting, piping methods		WPC13L-G Gas pressure*	WPC13L-T Gas pressure*	WPC40L-G Gas pressure*	WPC40L-T Gas pressure*	
		Manifold mounting	Piping mounting	Manifold mounting	Piping mounting	
Pressure range	MPa	Refer to page →229 for characteristic line diagram.				
Gas capacity	cm ³	13		40		
Oil capacity	cm ³	10		30		
Mass	kg	1.1		1.6		


- Proof pressure:10.5 MPa Operating temperature:0–60°C Fluid used:General mineral based hydraulic oil (ISO-VG32 equivalent)
- There is also a type that adopts fluorocarbon for seal sections where cutting fluid is applied, as a measure for the use of chlorine-based cutting fluid (this is not thermal resistant specification. Model designation WPC□L-□□-V).
- *:Initially filled gas pressure can be set in range of 1 MPa to 6 MPa with 0.5 MPa increment. Specify gas pressure when ordering. Example:WPC13L-T3.0 (gas pressure 3 MPa)

Dimensions

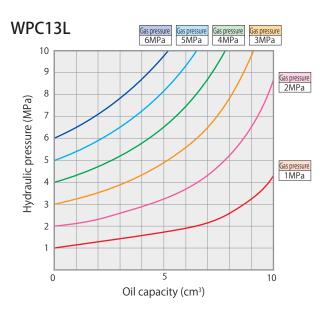


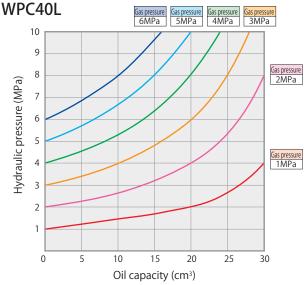
Mounting details



When manifold piping, the mounting surface finish must be no rougher than Rz6.3 (ISO4287:1997).

WPC40L- *No internal filter


Mounting details



Mounting screws are not included.

Accumulator

Characteristic line diagram

This characteristic line diagram represents theoretical values.

Model selection example

Condition (estimated temperature drop: 20°)

Working clamp	CTU06×8 pieces	Piping	Inner diameter ø6×0.8 m×8 pieces
Hydraulic pressure:P	6 MPa	Valve & hydraulic pressure equipment	VCB: 1 piece, VRG: 2 pieces

Selection procedure

1. Calculation of circuit capacity

Clamping capacity: $8.9 \times 2.35 \times 8 = 167 \text{ cm}^3$ Pressure bearing area Stroke Qty

Piping capacity: $0.283 \times 80 \times 8 = 181 \text{ cm}^3$

Valve & hydraulic equipment capacity : $8 \times 3 = 24 \text{ cm}^3$

(Perform calculation with capacity of 8 cm³ for each of valves and hydraulic equipment in hydraulic circuit, when using Pascal product.)

Circuit capacity: 167+181+24=372 cm³

2. Selection of oil capacity

Select the equipment having oil capacity capable of keeping volumetric change. Volumetric change is obtained by using formula shown below.

 $\Delta V = V \times \Delta T \times \alpha$ ΔV : Volumetric change (cm³) V: Circuit capacity (cm³)

 ΔT : Temperature change (°C) α : Thermal expansion coefficient (7.8×10⁻⁴)

 $\Delta V = 372 \times 20 \times 7.8 \times 10^{-4} = 5.8 \text{ cm}^3$

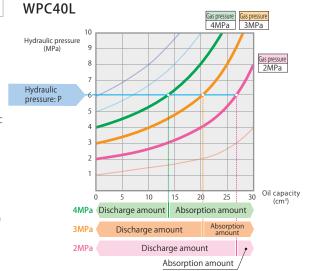
Here, WPC40L is selected as an example (*1).

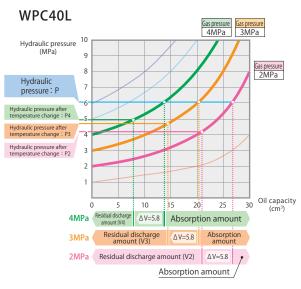
3. Selection of gas pressure

Select the pressure whose oil discharge amount (*2) under hydraulic pressure satisfies ΔV calculated in step 2. Read off characteristic line diagram.

If the hydraulic pressure of the clamping circuit is 6 MPa, select gas pressure 2 MPa, 3 MPa, or 4 MPa.

4. Verification of hydraulic pressure and residual discharge amount (*2) after temperature change Select the one whose hydraulic pressure drop after temperature change is low and residual discharge amount (*2) satisfies the marginal oil amount (*3). Read off characteristic line diagram.


The hydraulic pressure after temperature change drops to 4.2 MPa with 2 MPa gas pressure (P2), to 4.7 MPa with 3 MPa gas pressure (P3), and to 4.9 MPa with 4 MPa gas pressure (P4), respectively.


The residual discharge amount (*2) is 20.9 cm³ for 2 MPa gas pressure (V2), 14.2 hydraulic pressure after temperature change: P2 cm³ for 3 MPa (V3), and 7.5 cm³ for 4 MPa (V4), respectively.

Here, select WPC40L-□4 whose pressure drop is low.

5. Select piping method.

- *1: WPC13L is also available. Likewise, select appropriate one in consideration of steps 3 and 4.
- *2 : For when the temperature decreases. If the temperature increases, check the absorption amount.
- *3 : Allow adequate margin for residual discharge amount after temperature change, as there may be margin of error with gas filling pressure. Marginal oil amount: About 2.0 cm³

