이스페션C클램드

CGC

Expansion clamp

익 스 펜 션 클 램 프

사 양

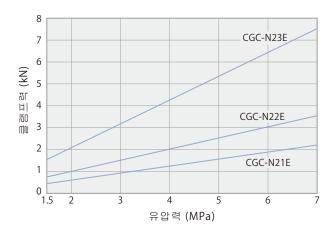
사이즈 그립내경 : 그리퍼수

1 070 073 076 079 082 : 2그리퍼

CGC - N2 2 E 085 09 10 : 2그리퍼 11 12 13 : 3그리퍼

3 **12 13 14 15 16 : 3**그리퍼

는 수주생산품입니다.


형 식	사이즈			CGC-N21E*3					CGC-	N22E				CG	iC-N2	3E		
영 역	그립내경		070	073	076	079	082	085	09	10	11	12	13	12	13	14	15	16
그리퍼수						2그=	기퍼			,				3 그	리퍼			
클램프력(유	유압력7MPa)	kN	1.92*1		2	.24		3.04*1			3.54			7.50				
직경방향확징	남력(유압력7MPa)	kN	6.7*1		7.	.8		9.5*1			11.1					23.4		
테이퍼로드	스트로크	mm								4.8								
클램프스트	로크	mm								1.2								
실린더	클램프	cm³			1.7					2.	7					5.8		
용량	언클램프	cm³		2.3			3.5				7.2							
허용편심량	*4	mm						±0.5										
권장에어블.	로우압	MPa						0.3										
권장센서에	어 압	MPa						0.2										
질 량		kg			0.38			0.50				0.83						
취부볼트 권	장체결토르크 ※2	N∙m			3.5			7					12					
워크재질				알루미늄, 강철 등(HRC30 이하) 주철은 조건에 따리				나 사용	가능									
허용최소그	립내경	mm	6.7	6.7 7.0 7.3 7.6 7.9 8.2			8.7	9.7	10.7	11.7	12.7	11.7	12.7	13.7	14.7	15.7		
허용최대그	립내경	mm	7.4 7.7 8.0 8.3 8.6			9.2 9.7 10.7 11.7 12.7 13.7			13.7	12.7	13.7	14.7	15.7	16.7				
그립내경테이퍼각도(경사각도)				3°0 ō⊦														
그립내경진	원도					0.1°이하												

- 사용유압력범위:1.5~7 MPa (CGC-N21E070, GC-N22E085는1.5~6 MPa) 보증내압력:10.5 MPa (CGC-N21E070, CGC-N22E085는9 MPa)
- 사용주위온도:0~70 °C 사용유체:일반광물계작동유(ISO-VG32상당)

※1:유압력 6MPa시의 능력치 입니다. ※2:취부볼트의 강도구분은12.9로 합니다.

※3:CGC-N21E070, 073, 076, 079, 082에 언클램프 센서밸브는 없습니다. ※4:편심기구에 의해, 워크위치결정기능은 없습니다. 상기의 그립내경조건에 해당되지 않는 경우에 문의해 주십시오.

클램프력과 유압력

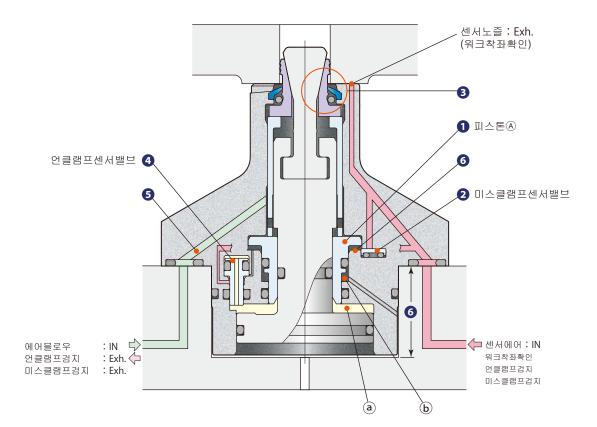
유압력	MPa	1.5	2	3	4	5	6	7
CGC-N21E 클램프력 F=0.320×P : 유압력	kN	0.48	0.64	0.96	1.28	1.60	1.92	2.24
CGC-N22E 클램프력 F=0.506×P:유압력	kN	0.76	1.01	1.52	2.02	2.53	3.04	3.54
CGC-N23E 클램프력 F=1.072×P : 유압력	kN	1.61	2.14	3.22	4.29	5.36	6.43	7.50

● CGC-N21E070, CGC-N22E085의 사용유압력은1.5~6 MPa입니다.

model CGC-N21E

2그리퍼 ø7.0 7.3 7.6 7.9 8.2

model CGC-N22E **2**그리퍼 3그리퍼


ø8.5 9 10 ø11 12 13

model CGC-N23E

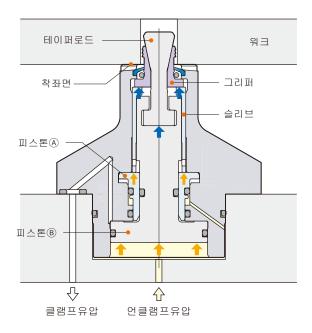
3그리퍼 ø12 13 14 15 16

① 그리퍼 서포트 기구 (PAT.)

●그리퍼를 유압(실린더◉부)에 의해 강력하게 서포트되고 있으므로, 높은 ●언클램프시는 피스톤의 상승에 의해 언클램프 센서밸브가 개방되어, 언클램 그립력을 얻게 되므로, 클램프시 그리퍼의 슬립을 방지합니다. 언클램프 시는 실린더⑥부에서 그리퍼를 서포트합니다.

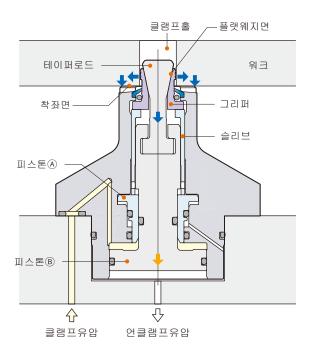
②미스클램프센서밸브 (PAT.)

●미스클램프를 에어센서로 검지할 수 있어. 클램프 확인을 확실하게 실행 할 수 있습니다. →431페이지 참조

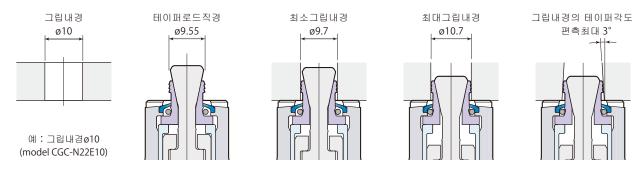

③칩을 침입 시키지 않는 완전한 씰 기구 (PAT.)

- ●테이퍼로드와 그리퍼, 스크레이퍼가 완전하게 접촉하여 틈이 생기지 않 않습니다. 기 때문에, 칩이 칩입하지 않습니다. →434, 435 페이지 참조
- ●논에어블로우로 절삭가공이 실행되기 때문에, 에어소비량이 적어, 에어블 로우미스트에 의한 환경악화를 막을 수 있습니다
- ●스크레이퍼가 일그러져 변형되지 않기 때문에, 내구성이 향상됩니다.

4 언클램프센서밸브 (PAT.)


- 프 검지가 확실하게 실행됩니다. →432페이지 참조
- ⑤ 에어블로우회로와 에어센서 배기회로의 공용 (PAT.)
- ●언클램프센서밸브와 미스클램프센서밸브의 배기회로를 에어블로회로와 공용 하여, 에어회로수를 줄임으로써, 회로설계를 용이하게 실행할 수 있습니다.
- ⑥ 피스톤(A)로 스트로크엔드를 취하는 기구 (PAT.)
- ●그리퍼가 확장 후, 클램프스트로크(하강)하므로, 스크레이퍼를 손상시키지
- ●클램프내부에서 스트로크엔드를 취하므로, 매립깊이에 공차가 필요없습니다.

- ① 피스톤(A)·B)와 슬리브에 의해, 테이퍼로드와 그리퍼가 상승합니다. 이때 그리퍼는 테이퍼로드 외경보다 안쪽으로 당겨져 있습니다.
- ② 워크를 착좌면 위에 세팅합니다.


워크홀딩

- ① 클램프유압에 의해, 피스톤®는 상승위치를 유지한 상태로, 피스톤®와 테이퍼로드가 하강합니다.
- ② 그리퍼는, 피스톤⑥와 슬리브에 의해 상승위치를 유지, 테이퍼로드의 플랫웨지면을 따라 수평방향으로 익스펜션 (확장)해, 클램프홀의 내경을 그립합니다.
- ③ 클램프홀의 내경을 그립하면서 그리퍼는 하강하여, 워크가 착좌면에 완전히 홀드됩니다.

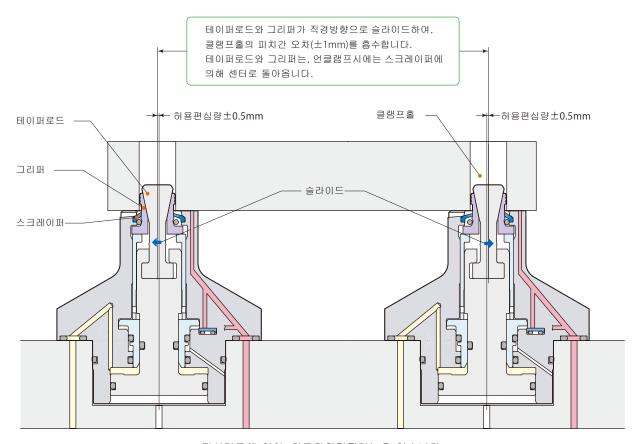
그리퍼의 확장스트로크가 큼

그리퍼의 수평방향의 확장스트로크가 1.0 mm (※)로 크므로, 다이캐스트홀경의 차이를 흡수할 수 있어, 워크홀딩이 확실하게 이루어집니다.

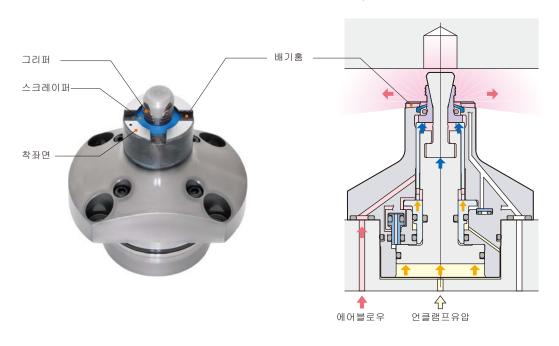
※: CGC-N21E070, 073, 076, 079, 082의 확장스트로크는 0.7mm 입니다.

내구성이 뛰어난 테이퍼로드와 그리퍼

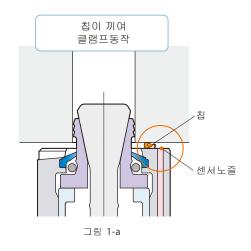
- ① 익스펜션클램프의 홀딩력은, 테이퍼로드의 플랫웨지면으로부터 그리퍼로 전달되어, 그리퍼가 워크내경을 잡고, 또한 착좌면으로 홀드하므로, 워크홀딩이 확실하게 이루어집니다.
- ② 그리퍼에는, 내마모성이 뛰어난 특수강을 채용하여, 내구성을 향상시켰습니다.



착좌면의 재연삭 가능(Max.0.1 mm)

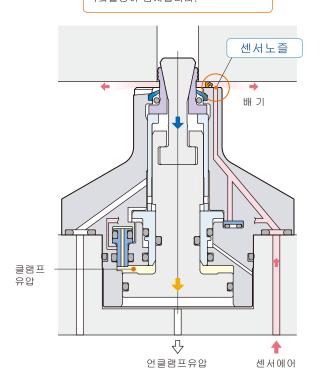

클램프홀의 피치간 오차 흡수가능

편심기구에 있어, 워크위치결정기능은 없습니다.


강력 에어블로우회로 내장

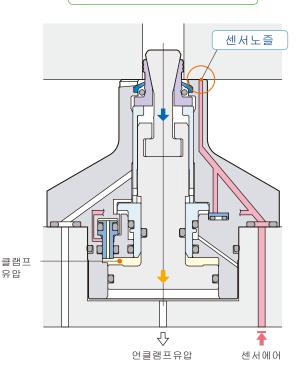
에어블로우는 그리퍼와 스크레이퍼의 사이에서 취출되어, 착좌면에 부착된 칩이나 쿨런트를 제거합니다. 워크세팅시의 에어블로우나 칩•쿨런트의 배출이 원활하게 실행될 수 있도록, 착좌면에 배기홈을 만들어 두었습니다.

워크의 착좌불량을 검지하는 센서노즐


칩이 끼여 클램프 동작이 된 경우(그림1-a)나, 워크의 변형이 커서, 워크세팅불량에 의해 착좌면으로부터 1.2mm 이상부상해서 세트된 경우(그림1-b), 워크가 착좌면에 홀드되지 않아, 센서노즐에 의해 센서에어가 배기되기 때문에,워크착좌불량을 검지할 수 있습니다.

착좌면으로부터 1.2 mm이상 부상해서 세팅 센서노즐

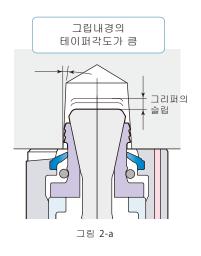
워크착좌불량

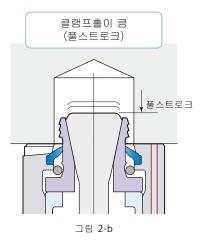

센서노즐에 의해 센서에어가 배기되어, 에어센서는 작동하지 않기 때문에 워크 착좌불량이 검지됩니다.

워크착좌완료

워크의 세팅불량

워크에 의해 센서노즐이 막혀서, 에어 센서는 워크착좌완료를 검지합니다.

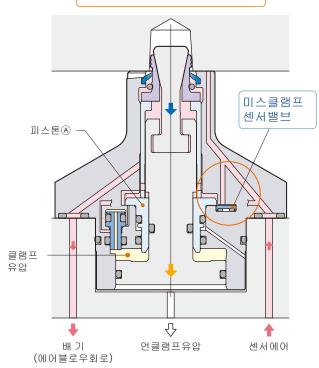

상 태	센서노즐	에어센서신호	유압압력스위치
워크착좌불량	Open 개방	에 어 센 서 OFF (센서에어는 흐릅니다.)	클램프유압 <mark>ON</mark>

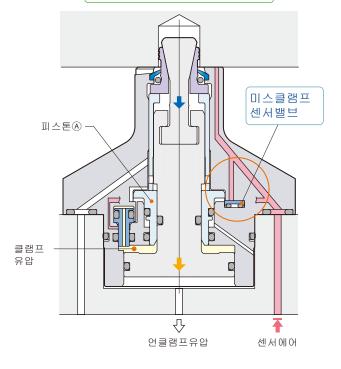

미스클램프를 검지하는 미스클램프센서밸브


PAT. JP4297511 US8246029 EP2253419

그립내경의 테이퍼각도가 커서 그리퍼가 슬립하여 정상적으로 클램프되지 않는 경우(그림2-a), 미스클램프센서밸브 열려, 센어에어가 배기되므로, 미스클램프가 검지됩니다.

클램프홀이 허용치보다 큰 경우(그림2-b), 만일 그리퍼가 파손된 경우(그림2-c)에도 동일하게 미스클램프가 검지됩니다.




미스클램프

피스톤(A)에 의해, 미스클램프센서밸브 가 열리기 때문에, 센서에어가 배기됩니 다. 에어센서는 작동하지 않기 때문에 미스클램프가 검지됩니다.

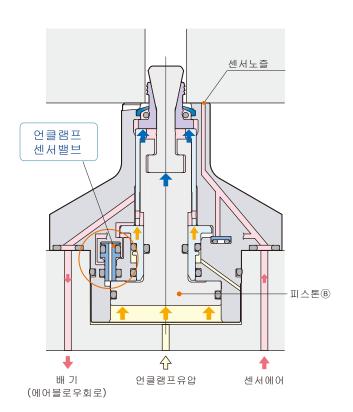
클램프완료

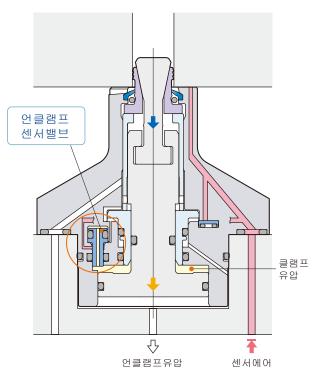
미스클램프센서밸브는 닫힌상태이므로, 에어센서가 정상으로 클램프완료를 검지합니다.

상 태	미스클램프 센서밸브	에어센서신호	유압압력스위치
미스클램프	Open 개방	에 어 센 서 OFF (센서에어는 흐릅니다.)	클램프유압 <mark>ON</mark>

언클램완료를 검지하는 언클램프센서밸브

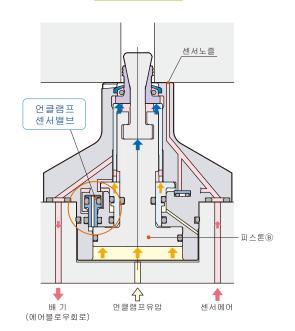
언클램프완료시, 워크가 센서노즐을 막은 상태라도, 언클램프센서밸브가 열려, 센서에어가 배기되기 때문에, 에어센서에서의 언클램프완료검지가 이루어집니다.

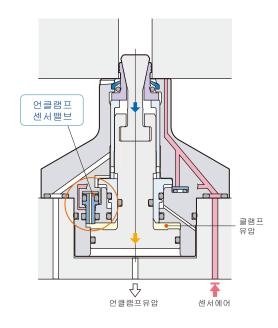

CGC-N21E070, 073, 076, 079, 082에 언클램프센서밸브는 없습니다.


언클램프완료

피스톤®에 의해, 언클램프센서밸브가 열리므로, 센서에어가 배기됩니다. 에어 센서는 작동하지 않기 때문에, 언클램프 완료가 검지됩니다.

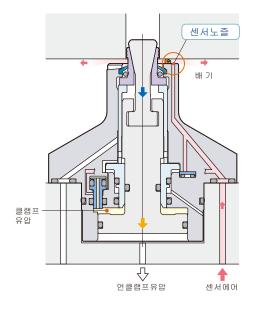
클램프완료


클램프유압에 의해, 언클램프센서밸브가 닫히기 때문에 에어센서가 정상적으로 클램프완료를 검지합니다.

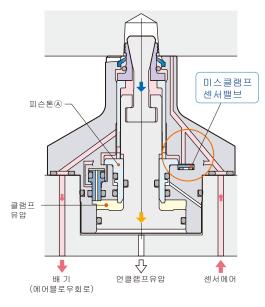


상 태	언 클램 프 센 서 밸 브	에어센서신호	유압압력스위치
언클램프완료	Open 개방	에 어 센 서 OFF (센서에어는 흐릅니다.)	언클램프유압 <mark>ON</mark>
클램프완료	Close 폐쇄	에 어 센 서 이N (센서에어는 흐르지 않습니다.)	클램프유압 <mark>ON</mark>

언클램프완료

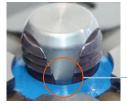


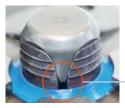
클램프완료



상 태	센서노즐	미스클램프 센서밸브	언클램프 센서밸브	에어센서신호	유압압력스위치
언클램프완료	Close 폐쇄	Close 폐쇄	Open 개방	에 어 센 서 OFF (센서에어는 흐릅니다.)	언클램프유압 <mark>ON</mark>
클램프완료	Close 폐쇄	Close 폐쇄	Close 폐쇄	에 어 센 서 이N (센서에어는 흐르지 않습니다.)	클램프유압 <mark>ON</mark>

워크착좌불량


미스클램프


상 태	센서노즐	미스클램프 센서밸브	언클램프 센서밸브	에어센서신호	유압압력스위치
워크착좌불량	Open 개방	Close 폐쇄	Close 폐쇄	에 어 센 서 OFF (센서에어는 흐릅니다.)	클램프유압 <mark>ON</mark>
미스클램프	Close 폐쇄	Open 개방	Close 폐쇄	에 어 센 서 OFF (센서에어는 흐릅니다.)	클램프유압 <mark>ON</mark>

신기구의 논에어블로우모델은, 로드·그리퍼·스크레이퍼 사이에 칩이 침입할 수 있는 틈이 없으므로, 가공중의 에어블로우가 불필요 하게 되었습니다.

가공중의 에어블로우가 불가결했던 에어블로우모델(구형:오른쪽 그림 참조)에서는, 50L/min (0.3MPa)의 에어가 상시 필요 (그립내경 Ø12의 경우)했었으나, 신모델의 개발에 의해, 에어블로우 시간이 클램프·언클램프 동작시와 워크교환시로 한정되기 때문에, 에어소비량을 대폭 억제할 수 있어 에너지절약을 도모할 수 있습니다.

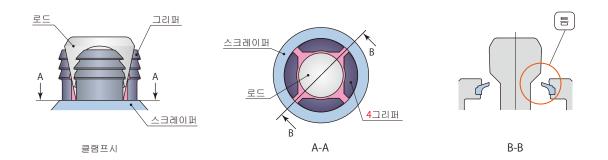
2그리퍼·3그리퍼 논에어블로우모델 클램프시에 칩의 침입 틈이 없음.

4그리퍼(구형) 에 어 블로우모델 클램프시에 칩의 침입 틈이 있음.

논에어블로우모델

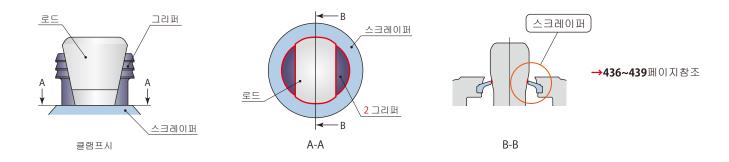
그리퍼수	그립내경	클램프력	형 식	
2 그리퍼	ø 7.0	1.92 kN (6MPa从l)	CCC NO.15 Days	
	ø 7.3 7.6 7.9 8.2	2.24 kN (7MPa시)	CGC-N21E 그립내경	
	ø 8.5	3.04 kN (6MPa从l)	CCC NOOF TRUITY	
	ø9 10	3.54 kN (7MPa시)	CGC-N2 <mark>2E</mark> 그립내경*	

※:CGC-N22E의 ø11∼ø13과 동일 실린더를 사용하고 있습니다.

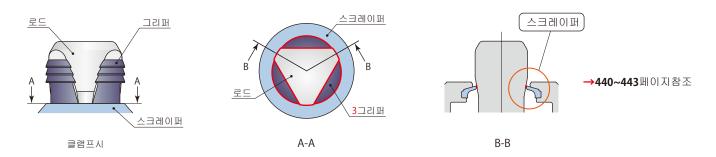

그리퍼수	그립내경	클램프력	형 식
2 ¬ ¬ π	ø 11 12 13	3.54 kN (7MPa시l)	CGC-N22E 그림내경 **
3 그리퍼	ø12 13 14 15 16	7.50 kN (7MPa시l)	CGC-N23E 그림내경

ø12, ø13은 클램프력이 다른 2모델에서 선정가능합니다. ※:CGC-N22E의 ø8.5 \sim ø10과 동일 실린더를 사용하고 있습니다.

CGC

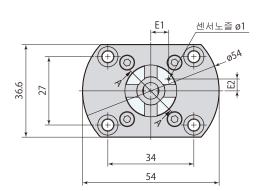

익스펜션C클램프

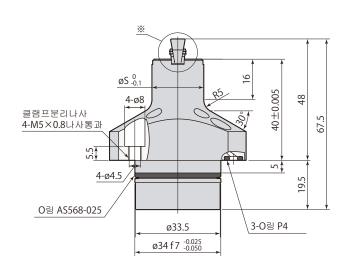
칩이 침입하는 틈이 발생(참고)

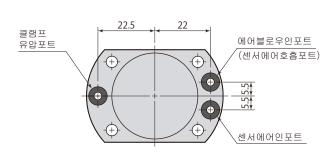


로드•그리퍼•스크레이퍼 사이에 틈이 있어, 칩이 침입하기 때문에, 상시 에어블로우가 필요합니다.

확실한 칩 프로텍트

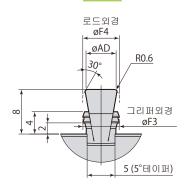



로드•그리퍼•스크레이퍼 사이에 틈이 없어, 칩이 침입하지 않기 때문에, 가공중의 에어블로우는 불필요합니다.

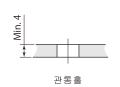


로드•그리퍼•스크레이퍼 사이에 틈이 없어, 칩이 침입하지 않기 때문에, 가공중의 에어블로우는 불필요합니다.

외형치수도

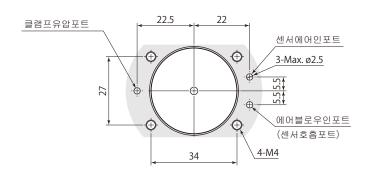


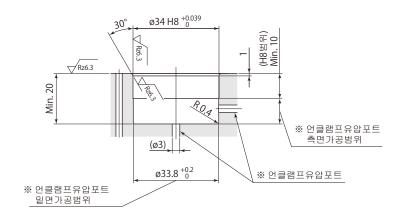
- 취부볼트는 부속되지 않습니다.
- O링의 재질은 불소고무(경도Hs90)입니다.
- 착좌면경도는 HRC55입니다.
- ●본 그림은 언클램프 상태를 나타냅니다.



※상세

사용가능한 그립 내경의 조건

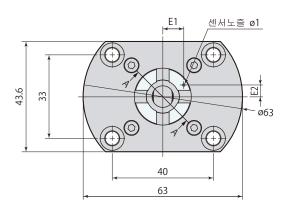


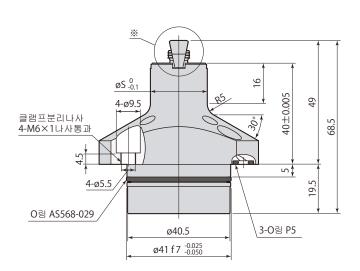


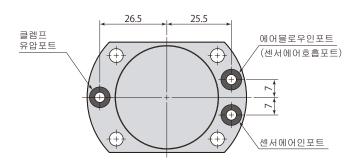
mm

					mm				
형 식		CGC-N21E□							
8 4 	070	073	076	079	082				
E1	7.1	7.1	7.3	7.5	7.6				
E2	4.7	4.7	4.7	4.7	4.7				
øF3	6.5	6.8	7.1	7.4	7.7				
ø F4	6.55	6.85	7.15	7.45	7.75				
øS	20.5	20.6	20.9	21.2	21.5				
øΤ	10.6	10.9	11.2	11.5	11.8				
øU	20	20.1	20.4	20.7	21				
ø AD	5.4	5.7	6	6.3	6.6				

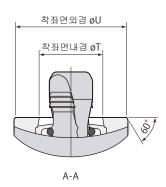
취부홀가공도

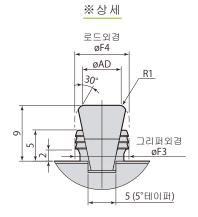


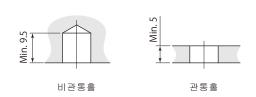



※:언클램프유압포트는 측면이나 밑면 어느쪽이든지 만들어 주십시오.

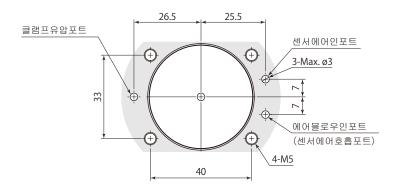
- ●취부면은 최대높이조도 Rz6.3 이하로 사상해 주십시오.
- 취부시에는 취부홀 및 모따기부에 그리스를 적당량 도포해 주십시오. 그리스를 필요이상 으로 도포하면, 여분의 그리스가 배관홀을 막아서 센서가 오작동을 일으킬 수 있습니다.
- ●O링의 손상을 막기 위해서, 30°의 테이퍼가공을 반드시 시공해 주십시오.

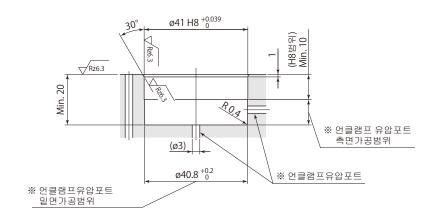

외형치수도





- ●취부볼트는 부속되지 않습니다.
- O링의 재질은 불소고무(경도Hs90)입니다.
- 착좌면경도는 HRC55입니다.
- ●본 그림은 언클램프상태를 나타냅니다.

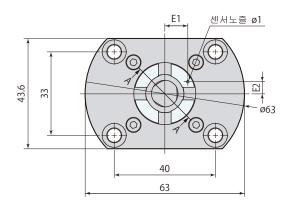

사용가능한 그립내경의 조건

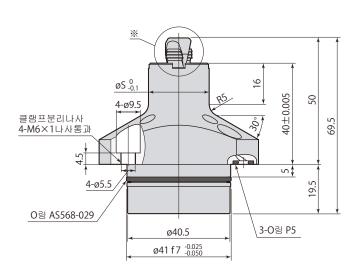


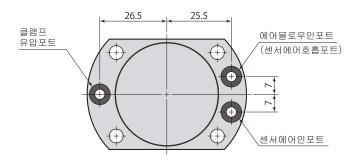
m	r

			mm
형 식		CGC-N22E□]
S 4	085	09	10
E1	8.3	8.3	8.9
E2	4.6	4.6	4.6
ø F3	8	8.5	9.5
ø F4	8.05	8.55	9.55
øS	22.5	22.5	23.5
øΤ	12.1	12.6	13.6
øU	22	22	23
ø AD	6.3	6.8	7.8

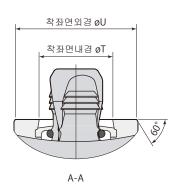
취부홀가공도

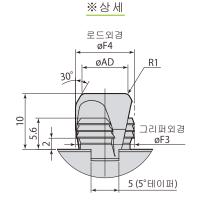





※: 언클램프유압포트는 측면이나 밑면 어느쪽이든지 만들어 주십시오.

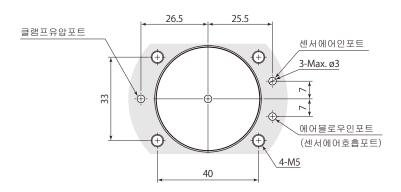
- ●취부면은 최대높이조도 Rz6.3 이하로 사상해 주십시오.
- 취부시에는 취부홀 및 모따기부에 그리스를 적당량 도포해 주십시오. 그리스를 필요이상 으로 도포하면, 여분의 그리스가 배관홀을 막아서 센서가 오작동을 일으킬 수 있습니다.
- ●O링의 손상을 막기 위해서, 30°의 테이퍼가공을 반드시 시공해 주십시오.

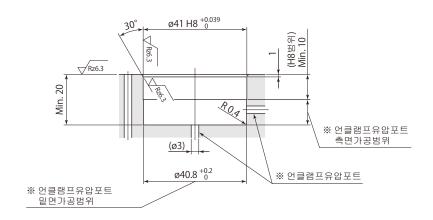

외형치수도




- 취부볼트는 부속되지 않습니다.
- O링의 재질은 불소고무(경도Hs90)입니다.
- 착좌면경도는 HRC55입니다.
- ●본 그림은 언클램프 상태를 나타냅니다.

사용가능한 그립내경의 조건

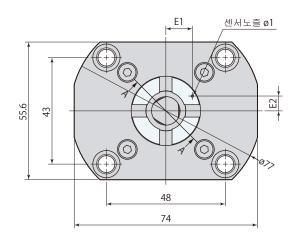


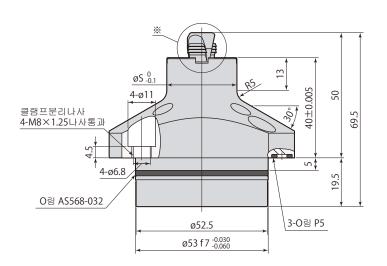


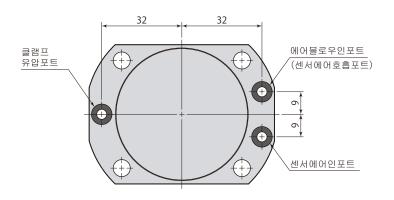
mm

			[1][1]	
형 식	CGC-N22E□			
95 (T) 	11	12	13	
E1	9.4	9.9	10.4	
E2	4.7	4.8	4.9	
ø F3	10.5	11.5	12.5	
ø F4	10.55	11.55	12.55	
øS	24.5	25.5	26.5	
øΤ	14.6	15.6	16.6	
øU	24	25	26	
ø AD	8.2	9.2	10.2	

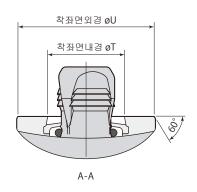
취부홀가공도

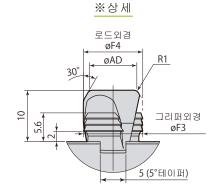


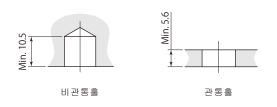



※: 언클램프유압포트는 측면이나 밑면 어느쪽이든지 만들어 주십시오.

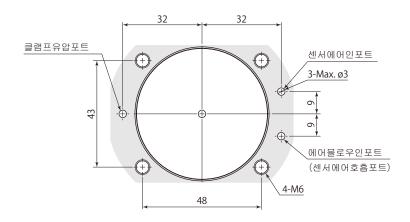
- ●취부면은 최대높이조도 Rz6.3 이하로 사상해 주십시오.
- 취부시에는 취부홀 및 모따기부에 그리스를 적당량 도포해 주십시오. 그리스를 필요이상 으로 도포하면, 여분의 그리스가 배관홀을 막아서 센서가 오작동을 일으킬 수 있습니다.
- ●O링의 손상을 막기 위해서, 30°의 테이퍼가공을 반드시 시공해 주십시오.

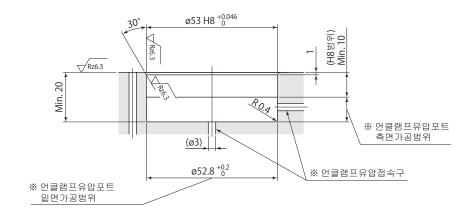

외형치수도





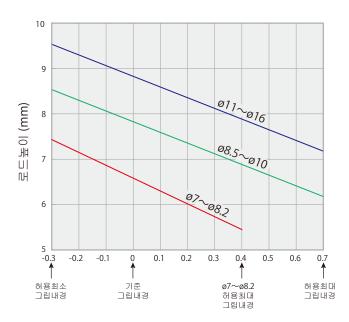
- 취부볼트는 부속되지 않습니다.
- O링의 재질은 불소고무(경도Hs90)입니다.
- 착좌면경도는 HRC55입니다.
- ●본 그림은 언클램프 상태를 나타냅니다.



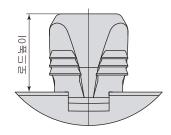

사용가능한 그립내경의 조건

					mm
형 식	CGC-N23E□				
0 7	12	13	14	15	16
E1	10.7	10.7	10.7	11	11.5
E2	6	6	6	6	6.1
ø F3	11.5	12.5	13.5	14.5	15.5
ø F4	11.55	12.55	13.55	14.55	15.55
øS	28	28	28	28.5	29.5
øΤ	15.6	16.6	17.6	18.6	19.6
øU	27.5	27.5	27.5	28	29
ø AD	9.2	10.2	11.2	12.2	13.2

취부홀가공도


※:언클램프유압포트는 측면이나 밑면 어느쪽이든지 만들어 주십시오.

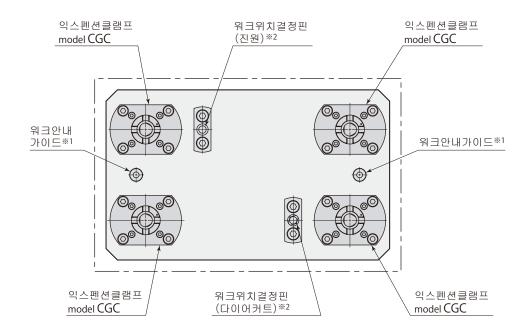
- ●취부면은 최대높이조도 Rz6.3 이하로 사상해 주십시오.
- 취부시에는 취부홀 및 모따기부에 그리스를 적당량 도포해 주십시오. 그리스를 필요이상 으로 도포하면, 여분의 그리스가 배관홀을 막아서 센서가 오작동을 일으킬 수 있습니다.
- ●O링의 손상을 막기 위해서, 30°의 테이퍼가공을 반드시 실시해 주십시오.

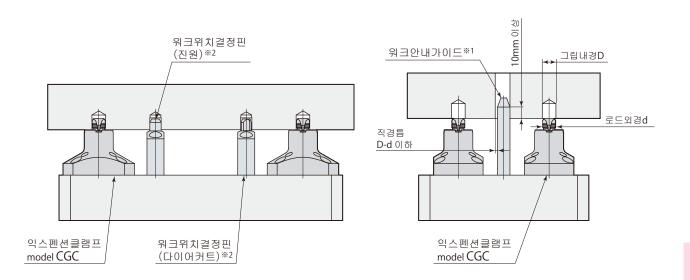

그리퍼세트의 교환

그리퍼수	그리퍼세트 형식	클램프 형식	세트내용	
2 그리퍼	CGC-N21EJ070	CGC-N21E070		
	CGC-N21EJ073	CGC-N21E073		
	CGC-N21EJ076	CGC-N21E076		
	CGC-N21EJ079	CGC-N21E079	스크레이퍼 × 1 그리퍼 (왼쪽표 참조)	
	CGC-N21EJ082	CGC-N21E082	O3 × 1	
	CGC-N22EJ085	CGC-N22E085		
	CGC-N22EJ09	CGC-N22E09		
	CGC-N22EJ10	CGC-N22E10		
	CGC-N22EJ11	CGC-N22E11		
	CGC-N22EJ12	CGC-N22E12		
3 그리퍼	CGC-N22EJ13	CGC-N22E13		
	CGC-N23EJ12	CGC-N23E12		
	CGC-N23EJ13	CGC-N23E13	그리퍼, 스크레이퍼, O링은 20만회를 기준으로 교환할 것을 권장합니다.	
	CGC-N23EJ14	CGC-N23E14	그리퍼는 세트로 교환해 주십시오.	
	CGC-N23EJ15	CGC-N23E15	(왼쪽표의 그리퍼세트 형식으로 주문해 주십시오	
	CGC-N23EJ16	CGC-N23E16		

클램프시의 그립내경과 로드높이의 관계

실제 그립내경과 기준그립내경과의 차 (mm)

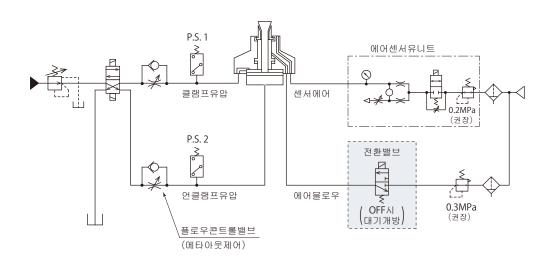



로드높이 계산식

ø7~ Ø8.2 : 6.58-2.84×기준그립내경과의 차ø8.5~ Ø10: 7.82-2.35×기준그립내경과의 차Ø11~ Ø16: 8.82-2.35×기준그립내경과의 차

예: CGC-N22E10(기준그립내경: ø10)으로 ø9.8의 홀을 클램프 했을 때

시스템 구성예

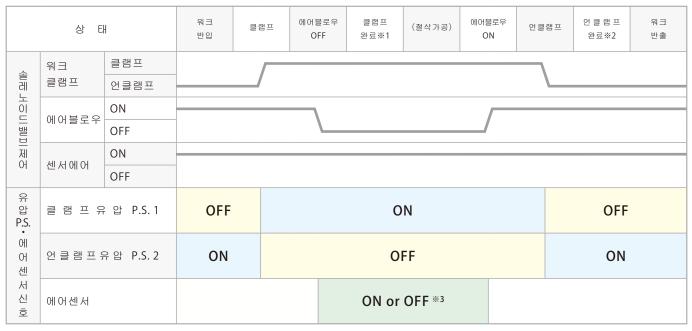


※1: 자동반송장치나 로봇반송에 의한 충격등으로 클램프부가 파손되는 것을 방지하기 위하여, 워크안내가이드를 설치해 주십시오.
워크안내가이드는, 위의 그림을 참고로 홀위치정도를 고려해서 선정해 주십시오.

※2: <u>익스펜션클램프에는, 워크위치결정 기능은 없습니다.</u> 워크위치결정핀 등을 설치해 주십시오.

CGC

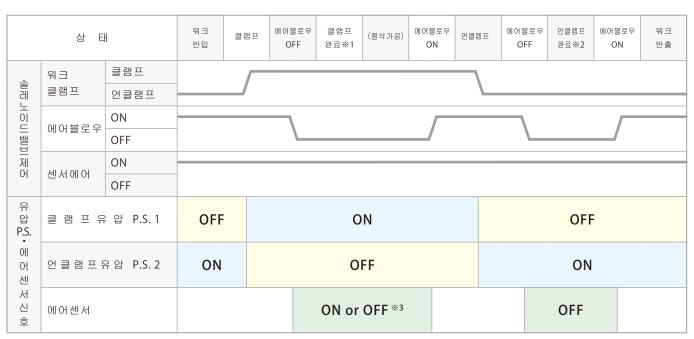
유공압회로도



- 언클램프 유압회로에 반드시, 메타아웃제어의 플로우콘트롤밸브를 설치해서 동작제어를 실행하여, 배압이 발생하도록 클램프스피드를 조정해 주십시오.(풀스트로크시간 0.3초 이상)언클램프 유압의 빠짐이 빠르면, 그리퍼가 클램프홀의 내경을 충분히 그립하지 않은채 하강하여, 미스클램프의 원인이 됩니다.
- 절삭가공중에는 에어블로우가 불필요합니다. 워크반입·반출시와, 클램프·언클램프 동작시에 에어블로우를 실시하여, 칩이나, 먼지 등을 제거해 주십시오.
- 에어센서에서의 확인은 에어블로우 OFF시에 실시해 주십시오. 에어블로우의 전환밸브는 에어블로우 OFF시에 대기개 방으로 되는 밸브를 선정해 주십시오. 미스클램프 발생시 및 언클램프시의 센서에어배기로가 됩니다.(CGC-N21E□의 경우는 미스클램프 발생시에만 센서에어배기로가 됩니다.)

동작사이클

정확한 동작상태를 검지하기 위해서, 아래의 그림과 같이 제어해 주십시오.


model CGC-N21E□ 의 경우

※1: 클 램 프 완 료: P.S. 1=ON P.S. 2=OFF 에어센서=ON

※2: 언클램프완료 : P.S. 1=OFF P.S. 2=ON ※3:ON: 정상클램프 OFF: 미스클램프발생

model CGC-N22E□, CGC-N23E□ 의 경우

※1: 클 램 프 완 료: P.S. 1=ON P.S. 2=OFF 에 어 센 서 = ON ※2: 언클램프완료: P.S. 1=OFF P.S. 2=ON 에 어 센 서 = OFF

※3:ON:정상클램프 OFF:미스클램프발생

사용상의 주의

- 에어블로우 회로내에, 클램프 취부면 이외의 배관은 내경 4mm 이상으로 해주십시오.
- 착좌면에 대하여 워크의 클램프홀이 수직이 되도록 워크를 설 치해 주십시오. 기울린 상태로 클램프 하면, 그리퍼가 홀에 균 등하게 접촉하지 않기 때문에 부하가 집중되어, 파손의 원인이 됩니다.
- 워크 설치전에 클램프홀 및 클램프 본체의 착좌면에 칩이나 먼지가 없는지 확인해 주십시오. 칩 등이 낀 채로 사용하면 클램 프가 불확실하게 되어, 가공정도가 저하될 우려가 있습니다.
- 워크재질이나 열처리조건 등에 따라, 그리퍼가 워크에 주는 상 처량(흔적)이 다릅니다. 워크 및 클램프홀의 조건은, →425 페이지에 기재되어 있는대로 해주십시오. 조건을 만족시키지 못하는 워크 및 클램프홀에서 사용하면, 확실한 클램프를 할 수 없습니다.
- 클램프홀이 테이퍼홀(경사가 있는 주물홀 등)인 경우는, 사용 전에 대상의 워크를 사용해서 테스트클램프를 실시하여, 동작 에 문제가 없는지 확인해 주십시오.
- 워크의 클램프홀 부분의 두께가 극단적으로 얇으면 변형될 가능성이 있습니다. 사용전에 대상의 워크를 사용해서 테스트 클램프를 실시하여, 두께가 얇은 부분에 변형이 없는지 확인해주십시오.
- 공급에어는 5μm 이하의 필터를 통과시킨 건조에어를 사용해 주십시오.
- 착좌면 평면도의 측정은 클램프측에 유압을 건 상태, 또는 클램프측・ 언클램프측 동시에 유압을 걸지 않은 상태에서 실시해 주십시오.
- 에어센서의 검출거리범위에 관해서는, 착좌면상으로부터 0.05mm 이하로 설정해 주십시오. 정확한 설정을 하기 위하여, 워크와 착좌면 사이에 간격게이지를 물려서, 검출거리를 산정해 주십시오. 설정방법은 에어센서의 취급설명서를 참조해 주십시오.

● 언클램프완료검지, 클램프완료검지, 미스클램프검지는, 아래의 표에 나타낸 스위치·센서의 조합으로 실시해 주십시오.(유공 압 회로도를 참조해 주십시오. →446페이지)

model CGC-N21E□의 경우

용도	압력 스위치 1 (P.S. 1)	압력 스위치 2 (P.S. 2)	에 어 센 서
언클램프완료검지	OFF	ON	_
클램프완료검지	ON	OFF	ON
미스클램프검지	ON	OFF	OFF

model CGC-N22E□, CGC-N23E□의 경우

용도	압력 스위치 1 (P.S. 1)	압력 스위치 2 (P.S. 2)	에 어 센 서
언클램프완료검지	OFF	ON	OFF
클램프완료검지	ON	OFF	ON
미스클램프검지	ON	OFF	OFF

● 에어센서는 아래의 제조사 형식을 권장합니다.

제조사	제품형식	
SMC주식회사	ISA3-F 시리즈 ISA2-G 시리즈	
CKD주식회사	GPS2-05 시리즈	

익스펜션C클램¤